Metamath Proof Explorer


Theorem cdleme22eALTN

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 4th line on p. 115. F , N , O represent f(z), f_z(s), f_z(t) respectively. When t \/ v = p \/ q, f_z(s) <_ f_z(t) \/ v. (Contributed by NM, 6-Dec-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme22.l ˙=K
cdleme22.j ˙=joinK
cdleme22.m ˙=meetK
cdleme22.a A=AtomsK
cdleme22.h H=LHypK
cdleme22eALT.u U=P˙Q˙W
cdleme22eALT.f F=y˙U˙Q˙P˙y˙W
cdleme22eALT.g G=z˙U˙Q˙P˙z˙W
cdleme22eALT.n N=P˙Q˙F˙S˙y˙W
cdleme22eALT.o O=P˙Q˙G˙T˙z˙W
Assertion cdleme22eALTN KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WN˙O˙V

Proof

Step Hyp Ref Expression
1 cdleme22.l ˙=K
2 cdleme22.j ˙=joinK
3 cdleme22.m ˙=meetK
4 cdleme22.a A=AtomsK
5 cdleme22.h H=LHypK
6 cdleme22eALT.u U=P˙Q˙W
7 cdleme22eALT.f F=y˙U˙Q˙P˙y˙W
8 cdleme22eALT.g G=z˙U˙Q˙P˙z˙W
9 cdleme22eALT.n N=P˙Q˙F˙S˙y˙W
10 cdleme22eALT.o O=P˙Q˙G˙T˙z˙W
11 simp11 KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WKHL
12 11 hllatd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WKLat
13 simp21l KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WPA
14 simp22l KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WQA
15 eqid BaseK=BaseK
16 15 2 4 hlatjcl KHLPAQAP˙QBaseK
17 11 13 14 16 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙QBaseK
18 simp12 KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WWH
19 simp3ll SAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WyA
20 19 3ad2ant3 KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WyA
21 1 2 3 4 5 6 7 15 cdleme1b KHLWHPAQAyAFBaseK
22 11 18 13 14 20 21 syl23anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WFBaseK
23 simp31 KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WSA
24 15 2 4 hlatjcl KHLSAyAS˙yBaseK
25 11 23 20 24 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WS˙yBaseK
26 15 5 lhpbase WHWBaseK
27 18 26 syl KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WWBaseK
28 15 3 latmcl KLatS˙yBaseKWBaseKS˙y˙WBaseK
29 12 25 27 28 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WS˙y˙WBaseK
30 15 2 latjcl KLatFBaseKS˙y˙WBaseKF˙S˙y˙WBaseK
31 12 22 29 30 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WF˙S˙y˙WBaseK
32 15 1 3 latmle1 KLatP˙QBaseKF˙S˙y˙WBaseKP˙Q˙F˙S˙y˙W˙P˙Q
33 12 17 31 32 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙F˙S˙y˙W˙P˙Q
34 9 33 eqbrtrid KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WN˙P˙Q
35 simp21 KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WPA¬P˙W
36 simp13 KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WTA
37 simp321 KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WVA
38 simp322 KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WV˙W
39 37 38 jca KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WVAV˙W
40 simp23 KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WPQ
41 simp323 KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙V=P˙Q
42 1 2 3 4 5 6 cdleme22a KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QV=U
43 11 18 35 14 36 39 40 41 42 syl233anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WV=U
44 43 oveq2d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WO˙V=O˙U
45 10 oveq1i O˙U=P˙Q˙G˙T˙z˙W˙U
46 simp21r KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙W¬P˙W
47 1 2 3 4 5 6 cdleme0a KHLWHPA¬P˙WQAPQUA
48 11 18 13 46 14 40 47 syl222anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WUA
49 simp3rl SAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WzA
50 49 3ad2ant3 KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WzA
51 1 2 3 4 5 6 8 15 cdleme1b KHLWHPAQAzAGBaseK
52 11 18 13 14 50 51 syl23anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WGBaseK
53 15 2 4 hlatjcl KHLTAzAT˙zBaseK
54 11 36 50 53 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙zBaseK
55 15 3 latmcl KLatT˙zBaseKWBaseKT˙z˙WBaseK
56 12 54 27 55 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙z˙WBaseK
57 15 2 latjcl KLatGBaseKT˙z˙WBaseKG˙T˙z˙WBaseK
58 12 52 56 57 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WG˙T˙z˙WBaseK
59 1 2 3 4 5 6 cdlemeulpq KHLWHPAQAU˙P˙Q
60 11 18 13 14 59 syl22anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WU˙P˙Q
61 15 1 2 3 4 atmod2i1 KHLUAP˙QBaseKG˙T˙z˙WBaseKU˙P˙QP˙Q˙G˙T˙z˙W˙U=P˙Q˙G˙T˙z˙W˙U
62 11 48 17 58 60 61 syl131anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙G˙T˙z˙W˙U=P˙Q˙G˙T˙z˙W˙U
63 45 62 eqtr2id KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙G˙T˙z˙W˙U=O˙U
64 43 oveq2d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙V=T˙U
65 41 64 eqtr3d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q=T˙U
66 15 2 4 hlatjcl KHLTAUAT˙UBaseK
67 11 36 48 66 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙UBaseK
68 15 4 atbase zAzBaseK
69 50 68 syl KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WzBaseK
70 15 1 2 latlej1 KLatT˙UBaseKzBaseKT˙U˙T˙U˙z
71 12 67 69 70 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙U˙T˙U˙z
72 2 4 hlatj32 KHLTAUAzAT˙U˙z=T˙z˙U
73 11 36 48 50 72 syl13anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙U˙z=T˙z˙U
74 15 4 atbase UAUBaseK
75 48 74 syl KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WUBaseK
76 15 2 latj32 KLatzBaseKUBaseKT˙z˙WBaseKz˙U˙T˙z˙W=z˙T˙z˙W˙U
77 12 69 75 56 76 syl13anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙Wz˙U˙T˙z˙W=z˙T˙z˙W˙U
78 15 2 latj32 KLatGBaseKT˙z˙WBaseKUBaseKG˙T˙z˙W˙U=G˙U˙T˙z˙W
79 12 52 56 75 78 syl13anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WG˙T˙z˙W˙U=G˙U˙T˙z˙W
80 15 2 4 hlatjcl KHLPAzAP˙zBaseK
81 11 13 50 80 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙zBaseK
82 1 2 4 hlatlej1 KHLPAzAP˙P˙z
83 11 13 50 82 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙P˙z
84 15 1 2 3 4 atmod3i1 KHLPAP˙zBaseKWBaseKP˙P˙zP˙P˙z˙W=P˙z˙P˙W
85 11 13 81 27 83 84 syl131anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙P˙z˙W=P˙z˙P˙W
86 eqid 1.K=1.K
87 1 2 86 4 5 lhpjat2 KHLWHPA¬P˙WP˙W=1.K
88 11 18 35 87 syl21anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙W=1.K
89 88 oveq2d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙z˙P˙W=P˙z˙1.K
90 hlol KHLKOL
91 11 90 syl KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WKOL
92 15 3 86 olm11 KOLP˙zBaseKP˙z˙1.K=P˙z
93 91 81 92 syl2anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙z˙1.K=P˙z
94 85 89 93 3eqtrd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙P˙z˙W=P˙z
95 94 oveq1d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙P˙z˙W˙Q=P˙z˙Q
96 6 oveq2i Q˙U=Q˙P˙Q˙W
97 1 2 4 hlatlej2 KHLPAQAQ˙P˙Q
98 11 13 14 97 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WQ˙P˙Q
99 15 1 2 3 4 atmod3i1 KHLQAP˙QBaseKWBaseKQ˙P˙QQ˙P˙Q˙W=P˙Q˙Q˙W
100 11 14 17 27 98 99 syl131anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WQ˙P˙Q˙W=P˙Q˙Q˙W
101 96 100 eqtrid KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WQ˙U=P˙Q˙Q˙W
102 simp22 KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WQA¬Q˙W
103 1 2 86 4 5 lhpjat2 KHLWHQA¬Q˙WQ˙W=1.K
104 11 18 102 103 syl21anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WQ˙W=1.K
105 104 oveq2d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙Q˙W=P˙Q˙1.K
106 15 3 86 olm11 KOLP˙QBaseKP˙Q˙1.K=P˙Q
107 91 17 106 syl2anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙1.K=P˙Q
108 101 105 107 3eqtrd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WQ˙U=P˙Q
109 108 oveq1d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WQ˙U˙P˙z˙W=P˙Q˙P˙z˙W
110 15 4 atbase PAPBaseK
111 13 110 syl KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WPBaseK
112 15 3 latmcl KLatP˙zBaseKWBaseKP˙z˙WBaseK
113 12 81 27 112 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙z˙WBaseK
114 15 4 atbase QAQBaseK
115 14 114 syl KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WQBaseK
116 15 2 latj32 KLatPBaseKP˙z˙WBaseKQBaseKP˙P˙z˙W˙Q=P˙Q˙P˙z˙W
117 12 111 113 115 116 syl13anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙P˙z˙W˙Q=P˙Q˙P˙z˙W
118 109 117 eqtr4d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WQ˙U˙P˙z˙W=P˙P˙z˙W˙Q
119 2 4 hlatj32 KHLPAQAzAP˙Q˙z=P˙z˙Q
120 11 13 14 50 119 syl13anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙z=P˙z˙Q
121 95 118 120 3eqtr4rd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙z=Q˙U˙P˙z˙W
122 15 2 latj32 KLatQBaseKUBaseKP˙z˙WBaseKQ˙U˙P˙z˙W=Q˙P˙z˙W˙U
123 12 115 75 113 122 syl13anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WQ˙U˙P˙z˙W=Q˙P˙z˙W˙U
124 121 123 eqtrd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙z=Q˙P˙z˙W˙U
125 124 oveq2d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙Wz˙U˙P˙Q˙z=z˙U˙Q˙P˙z˙W˙U
126 15 2 latjcl KLatP˙QBaseKzBaseKP˙Q˙zBaseK
127 12 17 69 126 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙zBaseK
128 15 1 2 latlej2 KLatP˙QBaseKzBaseKz˙P˙Q˙z
129 12 17 69 128 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙Wz˙P˙Q˙z
130 15 1 2 3 4 atmod1i1 KHLzAUBaseKP˙Q˙zBaseKz˙P˙Q˙zz˙U˙P˙Q˙z=z˙U˙P˙Q˙z
131 11 50 75 127 129 130 syl131anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙Wz˙U˙P˙Q˙z=z˙U˙P˙Q˙z
132 8 oveq1i G˙U=z˙U˙Q˙P˙z˙W˙U
133 15 2 4 hlatjcl KHLzAUAz˙UBaseK
134 11 50 48 133 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙Wz˙UBaseK
135 15 2 latjcl KLatQBaseKP˙z˙WBaseKQ˙P˙z˙WBaseK
136 12 115 113 135 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WQ˙P˙z˙WBaseK
137 1 2 4 hlatlej2 KHLzAUAU˙z˙U
138 11 50 48 137 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WU˙z˙U
139 15 1 2 3 4 atmod2i1 KHLUAz˙UBaseKQ˙P˙z˙WBaseKU˙z˙Uz˙U˙Q˙P˙z˙W˙U=z˙U˙Q˙P˙z˙W˙U
140 11 48 134 136 138 139 syl131anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙Wz˙U˙Q˙P˙z˙W˙U=z˙U˙Q˙P˙z˙W˙U
141 132 140 eqtrid KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WG˙U=z˙U˙Q˙P˙z˙W˙U
142 125 131 141 3eqtr4rd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WG˙U=z˙U˙P˙Q˙z
143 15 1 2 latlej1 KLatP˙QBaseKzBaseKP˙Q˙P˙Q˙z
144 12 17 69 143 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙P˙Q˙z
145 15 1 12 75 17 127 60 144 lattrd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WU˙P˙Q˙z
146 15 1 3 latleeqm1 KLatUBaseKP˙Q˙zBaseKU˙P˙Q˙zU˙P˙Q˙z=U
147 12 75 127 146 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WU˙P˙Q˙zU˙P˙Q˙z=U
148 145 147 mpbid KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WU˙P˙Q˙z=U
149 148 oveq2d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙Wz˙U˙P˙Q˙z=z˙U
150 142 149 eqtrd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WG˙U=z˙U
151 150 oveq1d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WG˙U˙T˙z˙W=z˙U˙T˙z˙W
152 79 151 eqtrd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WG˙T˙z˙W˙U=z˙U˙T˙z˙W
153 1 2 4 hlatlej2 KHLTAzAz˙T˙z
154 11 36 50 153 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙Wz˙T˙z
155 15 1 2 3 4 atmod3i1 KHLzAT˙zBaseKWBaseKz˙T˙zz˙T˙z˙W=T˙z˙z˙W
156 11 50 54 27 154 155 syl131anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙Wz˙T˙z˙W=T˙z˙z˙W
157 simp33r KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WzA¬z˙W
158 1 2 86 4 5 lhpjat2 KHLWHzA¬z˙Wz˙W=1.K
159 11 18 157 158 syl21anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙Wz˙W=1.K
160 159 oveq2d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙z˙z˙W=T˙z˙1.K
161 15 3 86 olm11 KOLT˙zBaseKT˙z˙1.K=T˙z
162 91 54 161 syl2anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙z˙1.K=T˙z
163 156 160 162 3eqtrrd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙z=z˙T˙z˙W
164 163 oveq1d KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙z˙U=z˙T˙z˙W˙U
165 77 152 164 3eqtr4rd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙z˙U=G˙T˙z˙W˙U
166 73 165 eqtrd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙U˙z=G˙T˙z˙W˙U
167 71 166 breqtrd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WT˙U˙G˙T˙z˙W˙U
168 65 167 eqbrtrd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙G˙T˙z˙W˙U
169 15 2 latjcl KLatG˙T˙z˙WBaseKUBaseKG˙T˙z˙W˙UBaseK
170 12 58 75 169 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WG˙T˙z˙W˙UBaseK
171 15 1 3 latleeqm1 KLatP˙QBaseKG˙T˙z˙W˙UBaseKP˙Q˙G˙T˙z˙W˙UP˙Q˙G˙T˙z˙W˙U=P˙Q
172 12 17 170 171 syl3anc KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙G˙T˙z˙W˙UP˙Q˙G˙T˙z˙W˙U=P˙Q
173 168 172 mpbid KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q˙G˙T˙z˙W˙U=P˙Q
174 44 63 173 3eqtr2rd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WP˙Q=O˙V
175 34 174 breqtrd KHLWHTAPA¬P˙WQA¬Q˙WPQSAVAV˙WT˙V=P˙QyA¬y˙WzA¬z˙WN˙O˙V