Metamath Proof Explorer


Theorem chfacfscmulfsupp

Description: A mapping of scaled values of the "characteristic factor function" is finitely supported. (Contributed by AV, 8-Nov-2019)

Ref Expression
Hypotheses chfacfisf.a A=NMatR
chfacfisf.b B=BaseA
chfacfisf.p P=Poly1R
chfacfisf.y Y=NMatP
chfacfisf.r ×˙=Y
chfacfisf.s -˙=-Y
chfacfisf.0 0˙=0Y
chfacfisf.t T=NmatToPolyMatR
chfacfisf.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
chfacfscmulcl.x X=var1R
chfacfscmulcl.m ·˙=Y
chfacfscmulcl.e ×˙=mulGrpP
Assertion chfacfscmulfsupp NFinRCRingMBsbB0sfinSupp0˙i0i×˙X·˙Gi

Proof

Step Hyp Ref Expression
1 chfacfisf.a A=NMatR
2 chfacfisf.b B=BaseA
3 chfacfisf.p P=Poly1R
4 chfacfisf.y Y=NMatP
5 chfacfisf.r ×˙=Y
6 chfacfisf.s -˙=-Y
7 chfacfisf.0 0˙=0Y
8 chfacfisf.t T=NmatToPolyMatR
9 chfacfisf.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
10 chfacfscmulcl.x X=var1R
11 chfacfscmulcl.m ·˙=Y
12 chfacfscmulcl.e ×˙=mulGrpP
13 7 fvexi 0˙V
14 13 a1i NFinRCRingMBsbB0s0˙V
15 ovexd NFinRCRingMBsbB0si0i×˙X·˙GiV
16 nnnn0 ss0
17 peano2nn0 s0s+10
18 16 17 syl ss+10
19 18 ad2antrl NFinRCRingMBsbB0ss+10
20 vex kV
21 csbov12g kVk/ii×˙X·˙Gi=k/ii×˙X·˙k/iGi
22 csbov1g kVk/ii×˙X=k/ii×˙X
23 csbvarg kVk/ii=k
24 23 oveq1d kVk/ii×˙X=k×˙X
25 22 24 eqtrd kVk/ii×˙X=k×˙X
26 csbfv k/iGi=Gk
27 26 a1i kVk/iGi=Gk
28 25 27 oveq12d kVk/ii×˙X·˙k/iGi=k×˙X·˙Gk
29 21 28 eqtrd kVk/ii×˙X·˙Gi=k×˙X·˙Gk
30 20 29 mp1i NFinRCRingMBsbB0sk0s+1<kk/ii×˙X·˙Gi=k×˙X·˙Gk
31 simplll NFinRCRingMBsbB0sk0s+1<kNFinRCRingMB
32 simpllr NFinRCRingMBsbB0sk0s+1<ksbB0s
33 16 adantr sbB0ss0
34 33 ad2antlr NFinRCRingMBsbB0sk0s0
35 34 nn0zd NFinRCRingMBsbB0sk0s
36 35 adantr NFinRCRingMBsbB0sk0s+1<ks
37 2z 2
38 37 a1i NFinRCRingMBsbB0sk0s+1<k2
39 36 38 zaddcld NFinRCRingMBsbB0sk0s+1<ks+2
40 simplr NFinRCRingMBsbB0sk0s+1<kk0
41 40 nn0zd NFinRCRingMBsbB0sk0s+1<kk
42 19 nn0zd NFinRCRingMBsbB0ss+1
43 nn0z k0k
44 zltp1le s+1ks+1<ks+1+1k
45 42 43 44 syl2an NFinRCRingMBsbB0sk0s+1<ks+1+1k
46 45 biimpa NFinRCRingMBsbB0sk0s+1<ks+1+1k
47 nncn ss
48 add1p1 ss+1+1=s+2
49 47 48 syl ss+1+1=s+2
50 49 breq1d ss+1+1ks+2k
51 50 bicomd ss+2ks+1+1k
52 51 adantr sbB0ss+2ks+1+1k
53 52 ad2antlr NFinRCRingMBsbB0sk0s+2ks+1+1k
54 53 adantr NFinRCRingMBsbB0sk0s+1<ks+2ks+1+1k
55 46 54 mpbird NFinRCRingMBsbB0sk0s+1<ks+2k
56 eluz2 ks+2s+2ks+2k
57 39 41 55 56 syl3anbrc NFinRCRingMBsbB0sk0s+1<kks+2
58 1 2 3 4 5 6 7 8 9 10 11 12 chfacfscmul0 NFinRCRingMBsbB0sks+2k×˙X·˙Gk=0˙
59 31 32 57 58 syl3anc NFinRCRingMBsbB0sk0s+1<kk×˙X·˙Gk=0˙
60 30 59 eqtrd NFinRCRingMBsbB0sk0s+1<kk/ii×˙X·˙Gi=0˙
61 60 ex NFinRCRingMBsbB0sk0s+1<kk/ii×˙X·˙Gi=0˙
62 61 ralrimiva NFinRCRingMBsbB0sk0s+1<kk/ii×˙X·˙Gi=0˙
63 breq1 z=s+1z<ks+1<k
64 63 rspceaimv s+10k0s+1<kk/ii×˙X·˙Gi=0˙z0k0z<kk/ii×˙X·˙Gi=0˙
65 19 62 64 syl2anc NFinRCRingMBsbB0sz0k0z<kk/ii×˙X·˙Gi=0˙
66 14 15 65 mptnn0fsupp NFinRCRingMBsbB0sfinSupp0˙i0i×˙X·˙Gi