Metamath Proof Explorer


Theorem chtvalz

Description: Value of the Chebyshev function for integers. (Contributed by Thierry Arnoux, 28-Dec-2021)

Ref Expression
Assertion chtvalz NθN=n1Nlogn

Proof

Step Hyp Ref Expression
1 zre NN
2 chtval NθN=n0Nlogn
3 1 2 syl NθN=n0Nlogn
4 nnz NN
5 ppisval N0N=2N
6 1 5 syl N0N=2N
7 flid NN=N
8 7 oveq2d N2N=2N
9 8 ineq1d N2N=2N
10 6 9 eqtrd N0N=2N
11 4 10 syl N0N=2N
12 2nn 2
13 nnuz =1
14 12 13 eleqtri 21
15 fzss1 212N1N
16 14 15 ax-mp 2N1N
17 ssdif0 2N1N2N1N=
18 16 17 mpbi 2N1N=
19 18 ineq1i 2N1N=
20 0in =
21 19 20 eqtri 2N1N=
22 21 a1i N2N1N=
23 13 eleq2i NN1
24 fzpred N11N=11+1N
25 23 24 sylbi N1N=11+1N
26 25 eqcomd N11+1N=1N
27 1p1e2 1+1=2
28 27 oveq1i 1+1N=2N
29 28 a1i N1+1N=2N
30 26 29 difeq12d N11+1N1+1N=1N2N
31 difun2 11+1N1+1N=11+1N
32 fzpreddisj N111+1N=
33 23 32 sylbi N11+1N=
34 disjdif2 11+1N=11+1N=1
35 33 34 syl N11+1N=1
36 31 35 eqtrid N11+1N1+1N=1
37 30 36 eqtr3d N1N2N=1
38 37 ineq1d N1N2N=1
39 incom 1=1
40 1nprm ¬1
41 disjsn 1=¬1
42 40 41 mpbir 1=
43 39 42 eqtr3i 1=
44 38 43 eqtrdi N1N2N=
45 difininv 2N1N=1N2N=2N=1N
46 22 44 45 syl2anc N2N=1N
47 11 46 eqtrd N0N=1N
48 47 adantl NN0N=1N
49 znnnlt1 N¬NN<1
50 49 biimpa N¬NN<1
51 incom 0N=0N
52 isprm3 nn2i2n1¬in
53 52 simplbi nn2
54 53 ssriv 2
55 12 nnzi 2
56 uzssico 222+∞
57 55 56 ax-mp 22+∞
58 54 57 sstri 2+∞
59 incom 0N2+∞=2+∞0N
60 0xr 0*
61 60 a1i NN<10*
62 12 nnrei 2
63 62 rexri 2*
64 63 a1i NN<12*
65 0le0 00
66 65 a1i NN<100
67 1 adantr NN<1N
68 1red NN<11
69 62 a1i NN<12
70 simpr NN<1N<1
71 1lt2 1<2
72 71 a1i NN<11<2
73 67 68 69 70 72 lttrd NN<1N<2
74 iccssico 0*2*00N<20N02
75 61 64 66 73 74 syl22anc NN<10N02
76 pnfxr +∞*
77 icodisj 0*2*+∞*022+∞=
78 60 63 76 77 mp3an 022+∞=
79 ssdisj 0N02022+∞=0N2+∞=
80 75 78 79 sylancl NN<10N2+∞=
81 59 80 eqtr3id NN<12+∞0N=
82 ssdisj 2+∞2+∞0N=0N=
83 58 81 82 sylancr NN<10N=
84 51 83 eqtrid NN<10N=
85 1zzd NN<11
86 simpl NN<1N
87 fzn 1NN<11N=
88 87 biimpa 1NN<11N=
89 85 86 70 88 syl21anc NN<11N=
90 89 ineq1d NN<11N=
91 90 20 eqtrdi NN<11N=
92 84 91 eqtr4d NN<10N=1N
93 50 92 syldan N¬N0N=1N
94 exmidd NN¬N
95 48 93 94 mpjaodan N0N=1N
96 95 sumeq1d Nn0Nlogn=n1Nlogn
97 3 96 eqtrd NθN=n1Nlogn