| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
|
| 2 |
|
chtval |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
nnz |
|
| 5 |
|
ppisval |
|
| 6 |
1 5
|
syl |
|
| 7 |
|
flid |
|
| 8 |
7
|
oveq2d |
|
| 9 |
8
|
ineq1d |
|
| 10 |
6 9
|
eqtrd |
|
| 11 |
4 10
|
syl |
|
| 12 |
|
2nn |
|
| 13 |
|
nnuz |
|
| 14 |
12 13
|
eleqtri |
|
| 15 |
|
fzss1 |
|
| 16 |
14 15
|
ax-mp |
|
| 17 |
|
ssdif0 |
|
| 18 |
16 17
|
mpbi |
|
| 19 |
18
|
ineq1i |
|
| 20 |
|
0in |
|
| 21 |
19 20
|
eqtri |
|
| 22 |
21
|
a1i |
|
| 23 |
13
|
eleq2i |
|
| 24 |
|
fzpred |
|
| 25 |
23 24
|
sylbi |
|
| 26 |
25
|
eqcomd |
|
| 27 |
|
1p1e2 |
|
| 28 |
27
|
oveq1i |
|
| 29 |
28
|
a1i |
|
| 30 |
26 29
|
difeq12d |
|
| 31 |
|
difun2 |
|
| 32 |
|
fzpreddisj |
|
| 33 |
23 32
|
sylbi |
|
| 34 |
|
disjdif2 |
|
| 35 |
33 34
|
syl |
|
| 36 |
31 35
|
eqtrid |
|
| 37 |
30 36
|
eqtr3d |
|
| 38 |
37
|
ineq1d |
|
| 39 |
|
incom |
|
| 40 |
|
1nprm |
|
| 41 |
|
disjsn |
|
| 42 |
40 41
|
mpbir |
|
| 43 |
39 42
|
eqtr3i |
|
| 44 |
38 43
|
eqtrdi |
|
| 45 |
|
difininv |
|
| 46 |
22 44 45
|
syl2anc |
|
| 47 |
11 46
|
eqtrd |
|
| 48 |
47
|
adantl |
|
| 49 |
|
znnnlt1 |
|
| 50 |
49
|
biimpa |
|
| 51 |
|
incom |
|
| 52 |
|
isprm3 |
|
| 53 |
52
|
simplbi |
|
| 54 |
53
|
ssriv |
|
| 55 |
12
|
nnzi |
|
| 56 |
|
uzssico |
|
| 57 |
55 56
|
ax-mp |
|
| 58 |
54 57
|
sstri |
|
| 59 |
|
incom |
|
| 60 |
|
0xr |
|
| 61 |
60
|
a1i |
|
| 62 |
12
|
nnrei |
|
| 63 |
62
|
rexri |
|
| 64 |
63
|
a1i |
|
| 65 |
|
0le0 |
|
| 66 |
65
|
a1i |
|
| 67 |
1
|
adantr |
|
| 68 |
|
1red |
|
| 69 |
62
|
a1i |
|
| 70 |
|
simpr |
|
| 71 |
|
1lt2 |
|
| 72 |
71
|
a1i |
|
| 73 |
67 68 69 70 72
|
lttrd |
|
| 74 |
|
iccssico |
|
| 75 |
61 64 66 73 74
|
syl22anc |
|
| 76 |
|
pnfxr |
|
| 77 |
|
icodisj |
|
| 78 |
60 63 76 77
|
mp3an |
|
| 79 |
|
ssdisj |
|
| 80 |
75 78 79
|
sylancl |
|
| 81 |
59 80
|
eqtr3id |
|
| 82 |
|
ssdisj |
|
| 83 |
58 81 82
|
sylancr |
|
| 84 |
51 83
|
eqtrid |
|
| 85 |
|
1zzd |
|
| 86 |
|
simpl |
|
| 87 |
|
fzn |
|
| 88 |
87
|
biimpa |
|
| 89 |
85 86 70 88
|
syl21anc |
|
| 90 |
89
|
ineq1d |
|
| 91 |
90 20
|
eqtrdi |
|
| 92 |
84 91
|
eqtr4d |
|
| 93 |
50 92
|
syldan |
|
| 94 |
|
exmidd |
|
| 95 |
48 93 94
|
mpjaodan |
|
| 96 |
95
|
sumeq1d |
|
| 97 |
3 96
|
eqtrd |
|