Metamath Proof Explorer


Theorem circum

Description: The circumference of a circle of radius R , defined as the limit as n ~> +oo of the perimeter of an inscribed n-sided isogons, is ( ( 2 x. _pi ) x. R ) . (Contributed by Paul Chapman, 10-Nov-2012) (Proof shortened by Mario Carneiro, 21-May-2014)

Ref Expression
Hypotheses circum.1 A=2πn
circum.2 P=n2nRsinA2
circum.3 R
Assertion circum P2πR

Proof

Step Hyp Ref Expression
1 circum.1 A=2πn
2 circum.2 P=n2nRsinA2
3 circum.3 R
4 nnuz =1
5 1zzd 1
6 pirp π+
7 nnrp nn+
8 rpdivcl π+n+πn+
9 6 7 8 sylancr nπn+
10 9 rprene0d nπnπn0
11 eldifsn πn0πnπn0
12 10 11 sylibr nπn0
13 12 adantl nπn0
14 eqidd nπn=nπn
15 eqidd y0sinyy=y0sinyy
16 fveq2 y=πnsiny=sinπn
17 id y=πny=πn
18 16 17 oveq12d y=πnsinyy=sinπnπn
19 13 14 15 18 fmptco y0sinyynπn=nsinπnπn
20 eqid nπn=nπn
21 20 12 fmpti nπn:0
22 pire π
23 22 recni π
24 divcnv πnπn0
25 23 24 mp1i nπn0
26 sinccvg nπn:0nπn0y0sinyynπn1
27 21 25 26 sylancr y0sinyynπn1
28 19 27 eqbrtrrd nsinπnπn1
29 2re 2
30 29 22 remulcli 2π
31 30 3 remulcli 2πR
32 31 recni 2πR
33 32 a1i 2πR
34 nnex V
35 34 mptex n2nRsinA2V
36 2 35 eqeltri PV
37 36 a1i PV
38 eqid y0sinyy=y0sinyy
39 eldifi y0y
40 39 resincld y0siny
41 eldifsni y0y0
42 40 39 41 redivcld y0sinyy
43 38 42 fmpti y0sinyy:0
44 fco y0sinyy:0nπn:0y0sinyynπn:
45 43 21 44 mp2an y0sinyynπn:
46 19 mptru y0sinyynπn=nsinπnπn
47 46 feq1i y0sinyynπn:nsinπnπn:
48 45 47 mpbi nsinπnπn:
49 48 ffvelcdmi knsinπnπnk
50 49 adantl knsinπnπnk
51 50 recnd knsinπnπnk
52 29 recni 2
53 52 a1i k2
54 23 a1i kπ
55 nncn kk
56 55 adantl kk
57 nnne0 kk0
58 57 adantl kk0
59 53 54 56 58 divassd k2πk=2πk
60 59 oveq1d k2πk2=2πk2
61 simpr kk
62 nndivre πkπk
63 22 61 62 sylancr kπk
64 63 recnd kπk
65 2ne0 20
66 65 a1i k20
67 64 53 66 divcan3d k2πk2=πk
68 60 67 eqtrd k2πk2=πk
69 68 fveq2d ksin2πk2=sinπk
70 63 resincld ksinπk
71 70 recnd ksinπk
72 nnrp kk+
73 72 adantl kk+
74 rpdivcl π+k+πk+
75 6 73 74 sylancr kπk+
76 75 rpne0d kπk0
77 71 64 76 divcan2d kπksinπkπk=sinπk
78 69 77 eqtr4d ksin2πk2=πksinπkπk
79 78 oveq2d kRsin2πk2=Rπksinπkπk
80 3 recni R
81 80 a1i kR
82 oveq2 n=kπn=πk
83 82 fveq2d n=ksinπn=sinπk
84 83 82 oveq12d n=ksinπnπn=sinπkπk
85 eqid nsinπnπn=nsinπnπn
86 ovex sinπkπkV
87 84 85 86 fvmpt knsinπnπnk=sinπkπk
88 87 adantl knsinπnπnk=sinπkπk
89 88 51 eqeltrrd ksinπkπk
90 81 64 89 mulassd kRπksinπkπk=Rπksinπkπk
91 79 90 eqtr4d kRsin2πk2=Rπksinπkπk
92 91 oveq2d k2kRsin2πk2=2kRπksinπkπk
93 mulcl 2k2k
94 52 56 93 sylancr k2k
95 mulcl RπkRπk
96 80 64 95 sylancr kRπk
97 94 96 89 mulassd k2kRπksinπkπk=2kRπksinπkπk
98 53 56 81 64 mul4d k2kRπk=2Rkπk
99 54 56 58 divcan2d kkπk=π
100 99 oveq2d k2Rkπk=2Rπ
101 53 81 54 mul32d k2Rπ=2πR
102 100 101 eqtrd k2Rkπk=2πR
103 98 102 eqtrd k2kRπk=2πR
104 103 oveq1d k2kRπksinπkπk=2πRsinπkπk
105 92 97 104 3eqtr2d k2kRsin2πk2=2πRsinπkπk
106 oveq2 n=k2n=2k
107 oveq2 n=k2πn=2πk
108 1 107 eqtrid n=kA=2πk
109 108 oveq1d n=kA2=2πk2
110 109 fveq2d n=ksinA2=sin2πk2
111 110 oveq2d n=kRsinA2=Rsin2πk2
112 106 111 oveq12d n=k2nRsinA2=2kRsin2πk2
113 ovex 2kRsin2πk2V
114 112 2 113 fvmpt kPk=2kRsin2πk2
115 114 adantl kPk=2kRsin2πk2
116 88 oveq2d k2πRnsinπnπnk=2πRsinπkπk
117 105 115 116 3eqtr4d kPk=2πRnsinπnπnk
118 4 5 28 33 37 51 117 climmulc2 P2πR1
119 118 mptru P2πR1
120 32 mulridi 2πR1=2πR
121 119 120 breqtri P2πR