Metamath Proof Explorer


Theorem cncfuni

Description: A complex function on a subset of the complex numbers is continuous if its domain is the union of relatively open subsets over which the function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfuni.acn φA
cncfuni.f φF:A
cncfuni.auni φAB
cncfuni.opn φbBAbTopOpenfld𝑡A
cncfuni.fcn φbBFb:Abcn
Assertion cncfuni φF:Acn

Proof

Step Hyp Ref Expression
1 cncfuni.acn φA
2 cncfuni.f φF:A
3 cncfuni.auni φAB
4 cncfuni.opn φbBAbTopOpenfld𝑡A
5 cncfuni.fcn φbBFb:Abcn
6 3 sselda φxAxB
7 eluni2 xBbBxb
8 6 7 sylib φxAbBxb
9 simp1l φxAbBxbφ
10 simp2 φxAbBxbbB
11 elin xAbxAxb
12 11 biimpri xAxbxAb
13 12 adantll φxAxbxAb
14 13 3adant2 φxAbBxbxAb
15 2 fdmd φdomF=A
16 15 ineq2d φbdomF=bA
17 incom bA=Ab
18 16 17 eqtr2di φAb=bdomF
19 18 reseq2d φFAb=FbdomF
20 frel F:ARelF
21 2 20 syl φRelF
22 resindm RelFFbdomF=Fb
23 21 22 syl φFbdomF=Fb
24 19 23 eqtrd φFAb=Fb
25 inss1 AbA
26 25 a1i φAbA
27 26 1 sstrd φAb
28 ssidd φ
29 eqid TopOpenfld=TopOpenfld
30 eqid TopOpenfld𝑡Ab=TopOpenfld𝑡Ab
31 29 cnfldtop TopOpenfldTop
32 unicntop =TopOpenfld
33 32 restid TopOpenfldTopTopOpenfld𝑡=TopOpenfld
34 31 33 ax-mp TopOpenfld𝑡=TopOpenfld
35 34 eqcomi TopOpenfld=TopOpenfld𝑡
36 29 30 35 cncfcn AbAbcn=TopOpenfld𝑡AbCnTopOpenfld
37 27 28 36 syl2anc φAbcn=TopOpenfld𝑡AbCnTopOpenfld
38 37 eqcomd φTopOpenfld𝑡AbCnTopOpenfld=Abcn
39 24 38 eleq12d φFAbTopOpenfld𝑡AbCnTopOpenfldFb:Abcn
40 39 adantr φbBFAbTopOpenfld𝑡AbCnTopOpenfldFb:Abcn
41 5 40 mpbird φbBFAbTopOpenfld𝑡AbCnTopOpenfld
42 41 3adant3 φbBxAbFAbTopOpenfld𝑡AbCnTopOpenfld
43 29 cnfldtopon TopOpenfldTopOn
44 43 a1i φTopOpenfldTopOn
45 resttopon TopOpenfldTopOnAbTopOpenfld𝑡AbTopOnAb
46 44 27 45 syl2anc φTopOpenfld𝑡AbTopOnAb
47 46 3ad2ant1 φbBxAbTopOpenfld𝑡AbTopOnAb
48 43 a1i φbBxAbTopOpenfldTopOn
49 cncnp TopOpenfld𝑡AbTopOnAbTopOpenfldTopOnFAbTopOpenfld𝑡AbCnTopOpenfldFAb:AbxAbFAbTopOpenfld𝑡AbCnPTopOpenfldx
50 47 48 49 syl2anc φbBxAbFAbTopOpenfld𝑡AbCnTopOpenfldFAb:AbxAbFAbTopOpenfld𝑡AbCnPTopOpenfldx
51 42 50 mpbid φbBxAbFAb:AbxAbFAbTopOpenfld𝑡AbCnPTopOpenfldx
52 51 simprd φbBxAbxAbFAbTopOpenfld𝑡AbCnPTopOpenfldx
53 simp3 φbBxAbxAb
54 rspa xAbFAbTopOpenfld𝑡AbCnPTopOpenfldxxAbFAbTopOpenfld𝑡AbCnPTopOpenfldx
55 52 53 54 syl2anc φbBxAbFAbTopOpenfld𝑡AbCnPTopOpenfldx
56 31 a1i φTopOpenfldTop
57 cnex V
58 57 ssex AAV
59 1 58 syl φAV
60 restabs TopOpenfldTopAbAAVTopOpenfld𝑡A𝑡Ab=TopOpenfld𝑡Ab
61 56 26 59 60 syl3anc φTopOpenfld𝑡A𝑡Ab=TopOpenfld𝑡Ab
62 61 eqcomd φTopOpenfld𝑡Ab=TopOpenfld𝑡A𝑡Ab
63 62 oveq1d φTopOpenfld𝑡AbCnPTopOpenfld=TopOpenfld𝑡A𝑡AbCnPTopOpenfld
64 63 fveq1d φTopOpenfld𝑡AbCnPTopOpenfldx=TopOpenfld𝑡A𝑡AbCnPTopOpenfldx
65 64 3ad2ant1 φbBxAbTopOpenfld𝑡AbCnPTopOpenfldx=TopOpenfld𝑡A𝑡AbCnPTopOpenfldx
66 55 65 eleqtrd φbBxAbFAbTopOpenfld𝑡A𝑡AbCnPTopOpenfldx
67 resttop TopOpenfldTopAVTopOpenfld𝑡ATop
68 56 59 67 syl2anc φTopOpenfld𝑡ATop
69 68 3ad2ant1 φbBxAbTopOpenfld𝑡ATop
70 32 restuni TopOpenfldTopAA=TopOpenfld𝑡A
71 56 1 70 syl2anc φA=TopOpenfld𝑡A
72 26 71 sseqtrd φAbTopOpenfld𝑡A
73 72 3ad2ant1 φbBxAbAbTopOpenfld𝑡A
74 4 3adant3 φbBxAbAbTopOpenfld𝑡A
75 eqid TopOpenfld𝑡A=TopOpenfld𝑡A
76 75 isopn3 TopOpenfld𝑡ATopAbTopOpenfld𝑡AAbTopOpenfld𝑡AintTopOpenfld𝑡AAb=Ab
77 69 73 76 syl2anc φbBxAbAbTopOpenfld𝑡AintTopOpenfld𝑡AAb=Ab
78 74 77 mpbid φbBxAbintTopOpenfld𝑡AAb=Ab
79 78 eqcomd φbBxAbAb=intTopOpenfld𝑡AAb
80 53 79 eleqtrd φbBxAbxintTopOpenfld𝑡AAb
81 71 feq2d φF:AF:TopOpenfld𝑡A
82 2 81 mpbid φF:TopOpenfld𝑡A
83 82 3ad2ant1 φbBxAbF:TopOpenfld𝑡A
84 75 32 cnprest TopOpenfld𝑡ATopAbTopOpenfld𝑡AxintTopOpenfld𝑡AAbF:TopOpenfld𝑡AFTopOpenfld𝑡ACnPTopOpenfldxFAbTopOpenfld𝑡A𝑡AbCnPTopOpenfldx
85 69 73 80 83 84 syl22anc φbBxAbFTopOpenfld𝑡ACnPTopOpenfldxFAbTopOpenfld𝑡A𝑡AbCnPTopOpenfldx
86 66 85 mpbird φbBxAbFTopOpenfld𝑡ACnPTopOpenfldx
87 9 10 14 86 syl3anc φxAbBxbFTopOpenfld𝑡ACnPTopOpenfldx
88 87 rexlimdv3a φxAbBxbFTopOpenfld𝑡ACnPTopOpenfldx
89 8 88 mpd φxAFTopOpenfld𝑡ACnPTopOpenfldx
90 89 ralrimiva φxAFTopOpenfld𝑡ACnPTopOpenfldx
91 resttopon TopOpenfldTopOnATopOpenfld𝑡ATopOnA
92 44 1 91 syl2anc φTopOpenfld𝑡ATopOnA
93 cncnp TopOpenfld𝑡ATopOnATopOpenfldTopOnFTopOpenfld𝑡ACnTopOpenfldF:AxAFTopOpenfld𝑡ACnPTopOpenfldx
94 92 44 93 syl2anc φFTopOpenfld𝑡ACnTopOpenfldF:AxAFTopOpenfld𝑡ACnPTopOpenfldx
95 2 90 94 mpbir2and φFTopOpenfld𝑡ACnTopOpenfld
96 eqid TopOpenfld𝑡A=TopOpenfld𝑡A
97 29 96 35 cncfcn AAcn=TopOpenfld𝑡ACnTopOpenfld
98 1 28 97 syl2anc φAcn=TopOpenfld𝑡ACnTopOpenfld
99 98 eqcomd φTopOpenfld𝑡ACnTopOpenfld=Acn
100 95 99 eleqtrd φF:Acn