| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn |  | 
						
							| 2 | 1 | mul01d |  | 
						
							| 3 | 2 | 3ad2ant1 |  | 
						
							| 4 |  | zcn |  | 
						
							| 5 | 4 | mul01d |  | 
						
							| 6 | 5 | 3ad2ant2 |  | 
						
							| 7 | 3 6 | eqtr4d |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 | 8 | oveq1d |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 |  | oveq2 |  | 
						
							| 12 | 11 | oveq1d |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 | 13 | oveq1d |  | 
						
							| 15 | 12 14 | eqeq12d |  | 
						
							| 16 | 10 15 | imbitrrid |  | 
						
							| 17 |  | oveq2 |  | 
						
							| 18 |  | oveq2 |  | 
						
							| 19 | 17 18 | eqeq12d |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 |  | simpl |  | 
						
							| 23 |  | simp3 |  | 
						
							| 24 |  | divgcdnnr |  | 
						
							| 25 | 22 23 24 | syl2anr |  | 
						
							| 26 |  | simpl1 |  | 
						
							| 27 |  | simpl2 |  | 
						
							| 28 |  | moddvds |  | 
						
							| 29 | 25 26 27 28 | syl3anc |  | 
						
							| 30 | 25 | nnzd |  | 
						
							| 31 |  | zsubcl |  | 
						
							| 32 | 31 | 3adant3 |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 | 30 33 | jca |  | 
						
							| 35 |  | divides |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 | 21 29 36 | 3bitrd |  | 
						
							| 38 |  | simpr |  | 
						
							| 39 | 30 | adantr |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 38 40 | zmulcld |  | 
						
							| 42 | 41 | zcnd |  | 
						
							| 43 | 31 | zcnd |  | 
						
							| 44 | 43 | 3adant3 |  | 
						
							| 45 | 44 | ad3antrrr |  | 
						
							| 46 | 23 | zcnd |  | 
						
							| 47 | 46 | ad3antrrr |  | 
						
							| 48 |  | simpr |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 | 42 45 47 49 | mulcan2d |  | 
						
							| 51 |  | zcn |  | 
						
							| 52 |  | subdir |  | 
						
							| 53 | 1 4 51 52 | syl3an |  | 
						
							| 54 | 53 | ad3antrrr |  | 
						
							| 55 | 54 | eqeq2d |  | 
						
							| 56 | 50 55 | bitr3d |  | 
						
							| 57 |  | nnz |  | 
						
							| 58 | 57 | adantr |  | 
						
							| 59 |  | simpr |  | 
						
							| 60 | 59 | zcnd |  | 
						
							| 61 | 60 | adantl |  | 
						
							| 62 | 46 | adantr |  | 
						
							| 63 |  | simpl |  | 
						
							| 64 | 63 | nnzd |  | 
						
							| 65 | 23 64 | anim12i |  | 
						
							| 66 |  | gcdcl |  | 
						
							| 67 | 65 66 | syl |  | 
						
							| 68 | 67 | nn0cnd |  | 
						
							| 69 |  | nnne0 |  | 
						
							| 70 | 69 | neneqd |  | 
						
							| 71 | 70 | adantr |  | 
						
							| 72 | 71 | adantl |  | 
						
							| 73 | 72 | intnand |  | 
						
							| 74 |  | gcdeq0 |  | 
						
							| 75 | 65 74 | syl |  | 
						
							| 76 | 75 | necon3abid |  | 
						
							| 77 | 73 76 | mpbird |  | 
						
							| 78 | 61 62 68 77 | divassd |  | 
						
							| 79 | 59 | adantl |  | 
						
							| 80 | 57 69 | jca |  | 
						
							| 81 | 80 | adantr |  | 
						
							| 82 | 23 81 | anim12i |  | 
						
							| 83 |  | 3anass |  | 
						
							| 84 | 82 83 | sylibr |  | 
						
							| 85 |  | divgcdz |  | 
						
							| 86 | 84 85 | syl |  | 
						
							| 87 | 79 86 | zmulcld |  | 
						
							| 88 | 78 87 | eqeltrd |  | 
						
							| 89 |  | dvdsmul1 |  | 
						
							| 90 | 58 88 89 | syl2an2 |  | 
						
							| 91 | 63 | nncnd |  | 
						
							| 92 | 91 | adantl |  | 
						
							| 93 |  | divmulasscom |  | 
						
							| 94 | 61 92 62 68 77 93 | syl32anc |  | 
						
							| 95 | 90 94 | breqtrrd |  | 
						
							| 96 | 95 | exp32 |  | 
						
							| 97 | 96 | adantrd |  | 
						
							| 98 | 97 | imp |  | 
						
							| 99 | 98 | adantr |  | 
						
							| 100 | 99 | imp |  | 
						
							| 101 |  | breq2 |  | 
						
							| 102 | 100 101 | syl5ibcom |  | 
						
							| 103 | 56 102 | sylbid |  | 
						
							| 104 | 103 | rexlimdva |  | 
						
							| 105 | 22 | adantl |  | 
						
							| 106 |  | zmulcl |  | 
						
							| 107 | 106 | 3adant2 |  | 
						
							| 108 | 107 | adantr |  | 
						
							| 109 |  | zmulcl |  | 
						
							| 110 | 109 | 3adant1 |  | 
						
							| 111 | 110 | adantr |  | 
						
							| 112 |  | moddvds |  | 
						
							| 113 | 105 108 111 112 | syl3anc |  | 
						
							| 114 | 113 | adantr |  | 
						
							| 115 | 104 114 | sylibrd |  | 
						
							| 116 | 115 | ex |  | 
						
							| 117 | 116 | com23 |  | 
						
							| 118 | 37 117 | sylbid |  | 
						
							| 119 | 118 | imp |  | 
						
							| 120 | 119 | com12 |  | 
						
							| 121 | 16 120 | pm2.61ine |  | 
						
							| 122 | 121 | ex |  |