Metamath Proof Explorer


Theorem cncongr2

Description: The other direction of the bicondition in cncongr . (Contributed by AV, 11-Jul-2021)

Ref Expression
Assertion cncongr2 ABCNM=NCgcdNAmodM=BmodMACmodN=BCmodN

Proof

Step Hyp Ref Expression
1 zcn AA
2 1 mul01d AA0=0
3 2 3ad2ant1 ABCA0=0
4 zcn BB
5 4 mul01d BB0=0
6 5 3ad2ant2 ABCB0=0
7 3 6 eqtr4d ABCA0=B0
8 7 adantr ABCNM=NCgcdNA0=B0
9 8 oveq1d ABCNM=NCgcdNA0modN=B0modN
10 9 adantr ABCNM=NCgcdNAmodM=BmodMA0modN=B0modN
11 oveq2 C=0AC=A0
12 11 oveq1d C=0ACmodN=A0modN
13 oveq2 C=0BC=B0
14 13 oveq1d C=0BCmodN=B0modN
15 12 14 eqeq12d C=0ACmodN=BCmodNA0modN=B0modN
16 10 15 imbitrrid C=0ABCNM=NCgcdNAmodM=BmodMACmodN=BCmodN
17 oveq2 M=NCgcdNAmodM=AmodNCgcdN
18 oveq2 M=NCgcdNBmodM=BmodNCgcdN
19 17 18 eqeq12d M=NCgcdNAmodM=BmodMAmodNCgcdN=BmodNCgcdN
20 19 adantl NM=NCgcdNAmodM=BmodMAmodNCgcdN=BmodNCgcdN
21 20 adantl ABCNM=NCgcdNAmodM=BmodMAmodNCgcdN=BmodNCgcdN
22 simpl NM=NCgcdNN
23 simp3 ABCC
24 divgcdnnr NCNCgcdN
25 22 23 24 syl2anr ABCNM=NCgcdNNCgcdN
26 simpl1 ABCNM=NCgcdNA
27 simpl2 ABCNM=NCgcdNB
28 moddvds NCgcdNABAmodNCgcdN=BmodNCgcdNNCgcdNAB
29 25 26 27 28 syl3anc ABCNM=NCgcdNAmodNCgcdN=BmodNCgcdNNCgcdNAB
30 25 nnzd ABCNM=NCgcdNNCgcdN
31 zsubcl ABAB
32 31 3adant3 ABCAB
33 32 adantr ABCNM=NCgcdNAB
34 30 33 jca ABCNM=NCgcdNNCgcdNAB
35 divides NCgcdNABNCgcdNABkkNCgcdN=AB
36 34 35 syl ABCNM=NCgcdNNCgcdNABkkNCgcdN=AB
37 21 29 36 3bitrd ABCNM=NCgcdNAmodM=BmodMkkNCgcdN=AB
38 simpr ABCNM=NCgcdNC0kk
39 30 adantr ABCNM=NCgcdNC0NCgcdN
40 39 adantr ABCNM=NCgcdNC0kNCgcdN
41 38 40 zmulcld ABCNM=NCgcdNC0kkNCgcdN
42 41 zcnd ABCNM=NCgcdNC0kkNCgcdN
43 31 zcnd ABAB
44 43 3adant3 ABCAB
45 44 ad3antrrr ABCNM=NCgcdNC0kAB
46 23 zcnd ABCC
47 46 ad3antrrr ABCNM=NCgcdNC0kC
48 simpr ABCNM=NCgcdNC0C0
49 48 adantr ABCNM=NCgcdNC0kC0
50 42 45 47 49 mulcan2d ABCNM=NCgcdNC0kkNCgcdNC=ABCkNCgcdN=AB
51 zcn CC
52 subdir ABCABC=ACBC
53 1 4 51 52 syl3an ABCABC=ACBC
54 53 ad3antrrr ABCNM=NCgcdNC0kABC=ACBC
55 54 eqeq2d ABCNM=NCgcdNC0kkNCgcdNC=ABCkNCgcdNC=ACBC
56 50 55 bitr3d ABCNM=NCgcdNC0kkNCgcdN=ABkNCgcdNC=ACBC
57 nnz NN
58 57 adantr NkN
59 simpr Nkk
60 59 zcnd Nkk
61 60 adantl ABCNkk
62 46 adantr ABCNkC
63 simpl NkN
64 63 nnzd NkN
65 23 64 anim12i ABCNkCN
66 gcdcl CNCgcdN0
67 65 66 syl ABCNkCgcdN0
68 67 nn0cnd ABCNkCgcdN
69 nnne0 NN0
70 69 neneqd N¬N=0
71 70 adantr Nk¬N=0
72 71 adantl ABCNk¬N=0
73 72 intnand ABCNk¬C=0N=0
74 gcdeq0 CNCgcdN=0C=0N=0
75 65 74 syl ABCNkCgcdN=0C=0N=0
76 75 necon3abid ABCNkCgcdN0¬C=0N=0
77 73 76 mpbird ABCNkCgcdN0
78 61 62 68 77 divassd ABCNkkCCgcdN=kCCgcdN
79 59 adantl ABCNkk
80 57 69 jca NNN0
81 80 adantr NkNN0
82 23 81 anim12i ABCNkCNN0
83 3anass CNN0CNN0
84 82 83 sylibr ABCNkCNN0
85 divgcdz CNN0CCgcdN
86 84 85 syl ABCNkCCgcdN
87 79 86 zmulcld ABCNkkCCgcdN
88 78 87 eqeltrd ABCNkkCCgcdN
89 dvdsmul1 NkCCgcdNNNkCCgcdN
90 58 88 89 syl2an2 ABCNkNNkCCgcdN
91 63 nncnd NkN
92 91 adantl ABCNkN
93 divmulasscom kNCCgcdNCgcdN0kNCgcdNC=NkCCgcdN
94 61 92 62 68 77 93 syl32anc ABCNkkNCgcdNC=NkCCgcdN
95 90 94 breqtrrd ABCNkNkNCgcdNC
96 95 exp32 ABCNkNkNCgcdNC
97 96 adantrd ABCNM=NCgcdNkNkNCgcdNC
98 97 imp ABCNM=NCgcdNkNkNCgcdNC
99 98 adantr ABCNM=NCgcdNC0kNkNCgcdNC
100 99 imp ABCNM=NCgcdNC0kNkNCgcdNC
101 breq2 kNCgcdNC=ACBCNkNCgcdNCNACBC
102 100 101 syl5ibcom ABCNM=NCgcdNC0kkNCgcdNC=ACBCNACBC
103 56 102 sylbid ABCNM=NCgcdNC0kkNCgcdN=ABNACBC
104 103 rexlimdva ABCNM=NCgcdNC0kkNCgcdN=ABNACBC
105 22 adantl ABCNM=NCgcdNN
106 zmulcl ACAC
107 106 3adant2 ABCAC
108 107 adantr ABCNM=NCgcdNAC
109 zmulcl BCBC
110 109 3adant1 ABCBC
111 110 adantr ABCNM=NCgcdNBC
112 moddvds NACBCACmodN=BCmodNNACBC
113 105 108 111 112 syl3anc ABCNM=NCgcdNACmodN=BCmodNNACBC
114 113 adantr ABCNM=NCgcdNC0ACmodN=BCmodNNACBC
115 104 114 sylibrd ABCNM=NCgcdNC0kkNCgcdN=ABACmodN=BCmodN
116 115 ex ABCNM=NCgcdNC0kkNCgcdN=ABACmodN=BCmodN
117 116 com23 ABCNM=NCgcdNkkNCgcdN=ABC0ACmodN=BCmodN
118 37 117 sylbid ABCNM=NCgcdNAmodM=BmodMC0ACmodN=BCmodN
119 118 imp ABCNM=NCgcdNAmodM=BmodMC0ACmodN=BCmodN
120 119 com12 C0ABCNM=NCgcdNAmodM=BmodMACmodN=BCmodN
121 16 120 pm2.61ine ABCNM=NCgcdNAmodM=BmodMACmodN=BCmodN
122 121 ex ABCNM=NCgcdNAmodM=BmodMACmodN=BCmodN