Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Cancellability of congruences
cncongr2
Next ⟩
cncongr
Metamath Proof Explorer
Ascii
Unicode
Theorem
cncongr2
Description:
The other direction of the bicondition in
cncongr
.
(Contributed by
AV
, 11-Jul-2021)
Ref
Expression
Assertion
cncongr2
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
mod
M
=
B
mod
M
→
A
C
mod
N
=
B
C
mod
N
Proof
Step
Hyp
Ref
Expression
1
zcn
⊢
A
∈
ℤ
→
A
∈
ℂ
2
1
mul01d
⊢
A
∈
ℤ
→
A
⋅
0
=
0
3
2
3ad2ant1
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
→
A
⋅
0
=
0
4
zcn
⊢
B
∈
ℤ
→
B
∈
ℂ
5
4
mul01d
⊢
B
∈
ℤ
→
B
⋅
0
=
0
6
5
3ad2ant2
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
→
B
⋅
0
=
0
7
3
6
eqtr4d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
→
A
⋅
0
=
B
⋅
0
8
7
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
⋅
0
=
B
⋅
0
9
8
oveq1d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
⋅
0
mod
N
=
B
⋅
0
mod
N
10
9
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
A
mod
M
=
B
mod
M
→
A
⋅
0
mod
N
=
B
⋅
0
mod
N
11
oveq2
⊢
C
=
0
→
A
C
=
A
⋅
0
12
11
oveq1d
⊢
C
=
0
→
A
C
mod
N
=
A
⋅
0
mod
N
13
oveq2
⊢
C
=
0
→
B
C
=
B
⋅
0
14
13
oveq1d
⊢
C
=
0
→
B
C
mod
N
=
B
⋅
0
mod
N
15
12
14
eqeq12d
⊢
C
=
0
→
A
C
mod
N
=
B
C
mod
N
↔
A
⋅
0
mod
N
=
B
⋅
0
mod
N
16
10
15
imbitrrid
⊢
C
=
0
→
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
A
mod
M
=
B
mod
M
→
A
C
mod
N
=
B
C
mod
N
17
oveq2
⊢
M
=
N
C
gcd
N
→
A
mod
M
=
A
mod
N
C
gcd
N
18
oveq2
⊢
M
=
N
C
gcd
N
→
B
mod
M
=
B
mod
N
C
gcd
N
19
17
18
eqeq12d
⊢
M
=
N
C
gcd
N
→
A
mod
M
=
B
mod
M
↔
A
mod
N
C
gcd
N
=
B
mod
N
C
gcd
N
20
19
adantl
⊢
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
mod
M
=
B
mod
M
↔
A
mod
N
C
gcd
N
=
B
mod
N
C
gcd
N
21
20
adantl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
mod
M
=
B
mod
M
↔
A
mod
N
C
gcd
N
=
B
mod
N
C
gcd
N
22
simpl
⊢
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
N
∈
ℕ
23
simp3
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
→
C
∈
ℤ
24
divgcdnnr
⊢
N
∈
ℕ
∧
C
∈
ℤ
→
N
C
gcd
N
∈
ℕ
25
22
23
24
syl2anr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
N
C
gcd
N
∈
ℕ
26
simpl1
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
∈
ℤ
27
simpl2
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
B
∈
ℤ
28
moddvds
⊢
N
C
gcd
N
∈
ℕ
∧
A
∈
ℤ
∧
B
∈
ℤ
→
A
mod
N
C
gcd
N
=
B
mod
N
C
gcd
N
↔
N
C
gcd
N
∥
A
−
B
29
25
26
27
28
syl3anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
mod
N
C
gcd
N
=
B
mod
N
C
gcd
N
↔
N
C
gcd
N
∥
A
−
B
30
25
nnzd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
N
C
gcd
N
∈
ℤ
31
zsubcl
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
−
B
∈
ℤ
32
31
3adant3
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
→
A
−
B
∈
ℤ
33
32
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
−
B
∈
ℤ
34
30
33
jca
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
N
C
gcd
N
∈
ℤ
∧
A
−
B
∈
ℤ
35
divides
⊢
N
C
gcd
N
∈
ℤ
∧
A
−
B
∈
ℤ
→
N
C
gcd
N
∥
A
−
B
↔
∃
k
∈
ℤ
k
N
C
gcd
N
=
A
−
B
36
34
35
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
N
C
gcd
N
∥
A
−
B
↔
∃
k
∈
ℤ
k
N
C
gcd
N
=
A
−
B
37
21
29
36
3bitrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
mod
M
=
B
mod
M
↔
∃
k
∈
ℤ
k
N
C
gcd
N
=
A
−
B
38
simpr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
k
∈
ℤ
39
30
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
→
N
C
gcd
N
∈
ℤ
40
39
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
N
C
gcd
N
∈
ℤ
41
38
40
zmulcld
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
k
N
C
gcd
N
∈
ℤ
42
41
zcnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
k
N
C
gcd
N
∈
ℂ
43
31
zcnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
−
B
∈
ℂ
44
43
3adant3
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
→
A
−
B
∈
ℂ
45
44
ad3antrrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
A
−
B
∈
ℂ
46
23
zcnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
→
C
∈
ℂ
47
46
ad3antrrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
C
∈
ℂ
48
simpr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
→
C
≠
0
49
48
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
C
≠
0
50
42
45
47
49
mulcan2d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
k
N
C
gcd
N
C
=
A
−
B
C
↔
k
N
C
gcd
N
=
A
−
B
51
zcn
⊢
C
∈
ℤ
→
C
∈
ℂ
52
subdir
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
C
=
A
C
−
B
C
53
1
4
51
52
syl3an
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
→
A
−
B
C
=
A
C
−
B
C
54
53
ad3antrrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
A
−
B
C
=
A
C
−
B
C
55
54
eqeq2d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
k
N
C
gcd
N
C
=
A
−
B
C
↔
k
N
C
gcd
N
C
=
A
C
−
B
C
56
50
55
bitr3d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
k
N
C
gcd
N
=
A
−
B
↔
k
N
C
gcd
N
C
=
A
C
−
B
C
57
nnz
⊢
N
∈
ℕ
→
N
∈
ℤ
58
57
adantr
⊢
N
∈
ℕ
∧
k
∈
ℤ
→
N
∈
ℤ
59
simpr
⊢
N
∈
ℕ
∧
k
∈
ℤ
→
k
∈
ℤ
60
59
zcnd
⊢
N
∈
ℕ
∧
k
∈
ℤ
→
k
∈
ℂ
61
60
adantl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
k
∈
ℂ
62
46
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
C
∈
ℂ
63
simpl
⊢
N
∈
ℕ
∧
k
∈
ℤ
→
N
∈
ℕ
64
63
nnzd
⊢
N
∈
ℕ
∧
k
∈
ℤ
→
N
∈
ℤ
65
23
64
anim12i
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
C
∈
ℤ
∧
N
∈
ℤ
66
gcdcl
⊢
C
∈
ℤ
∧
N
∈
ℤ
→
C
gcd
N
∈
ℕ
0
67
65
66
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
C
gcd
N
∈
ℕ
0
68
67
nn0cnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
C
gcd
N
∈
ℂ
69
nnne0
⊢
N
∈
ℕ
→
N
≠
0
70
69
neneqd
⊢
N
∈
ℕ
→
¬
N
=
0
71
70
adantr
⊢
N
∈
ℕ
∧
k
∈
ℤ
→
¬
N
=
0
72
71
adantl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
¬
N
=
0
73
72
intnand
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
¬
C
=
0
∧
N
=
0
74
gcdeq0
⊢
C
∈
ℤ
∧
N
∈
ℤ
→
C
gcd
N
=
0
↔
C
=
0
∧
N
=
0
75
65
74
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
C
gcd
N
=
0
↔
C
=
0
∧
N
=
0
76
75
necon3abid
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
C
gcd
N
≠
0
↔
¬
C
=
0
∧
N
=
0
77
73
76
mpbird
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
C
gcd
N
≠
0
78
61
62
68
77
divassd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
k
C
C
gcd
N
=
k
C
C
gcd
N
79
59
adantl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
k
∈
ℤ
80
57
69
jca
⊢
N
∈
ℕ
→
N
∈
ℤ
∧
N
≠
0
81
80
adantr
⊢
N
∈
ℕ
∧
k
∈
ℤ
→
N
∈
ℤ
∧
N
≠
0
82
23
81
anim12i
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
C
∈
ℤ
∧
N
∈
ℤ
∧
N
≠
0
83
3anass
⊢
C
∈
ℤ
∧
N
∈
ℤ
∧
N
≠
0
↔
C
∈
ℤ
∧
N
∈
ℤ
∧
N
≠
0
84
82
83
sylibr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
C
∈
ℤ
∧
N
∈
ℤ
∧
N
≠
0
85
divgcdz
⊢
C
∈
ℤ
∧
N
∈
ℤ
∧
N
≠
0
→
C
C
gcd
N
∈
ℤ
86
84
85
syl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
C
C
gcd
N
∈
ℤ
87
79
86
zmulcld
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
k
C
C
gcd
N
∈
ℤ
88
78
87
eqeltrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
k
C
C
gcd
N
∈
ℤ
89
dvdsmul1
⊢
N
∈
ℤ
∧
k
C
C
gcd
N
∈
ℤ
→
N
∥
N
k
C
C
gcd
N
90
58
88
89
syl2an2
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
N
∥
N
k
C
C
gcd
N
91
63
nncnd
⊢
N
∈
ℕ
∧
k
∈
ℤ
→
N
∈
ℂ
92
91
adantl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
N
∈
ℂ
93
divmulasscom
⊢
k
∈
ℂ
∧
N
∈
ℂ
∧
C
∈
ℂ
∧
C
gcd
N
∈
ℂ
∧
C
gcd
N
≠
0
→
k
N
C
gcd
N
C
=
N
k
C
C
gcd
N
94
61
92
62
68
77
93
syl32anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
k
N
C
gcd
N
C
=
N
k
C
C
gcd
N
95
90
94
breqtrrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
k
∈
ℤ
→
N
∥
k
N
C
gcd
N
C
96
95
exp32
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
→
N
∈
ℕ
→
k
∈
ℤ
→
N
∥
k
N
C
gcd
N
C
97
96
adantrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
→
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
k
∈
ℤ
→
N
∥
k
N
C
gcd
N
C
98
97
imp
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
k
∈
ℤ
→
N
∥
k
N
C
gcd
N
C
99
98
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
→
k
∈
ℤ
→
N
∥
k
N
C
gcd
N
C
100
99
imp
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
N
∥
k
N
C
gcd
N
C
101
breq2
⊢
k
N
C
gcd
N
C
=
A
C
−
B
C
→
N
∥
k
N
C
gcd
N
C
↔
N
∥
A
C
−
B
C
102
100
101
syl5ibcom
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
k
N
C
gcd
N
C
=
A
C
−
B
C
→
N
∥
A
C
−
B
C
103
56
102
sylbid
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
∧
k
∈
ℤ
→
k
N
C
gcd
N
=
A
−
B
→
N
∥
A
C
−
B
C
104
103
rexlimdva
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
→
∃
k
∈
ℤ
k
N
C
gcd
N
=
A
−
B
→
N
∥
A
C
−
B
C
105
22
adantl
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
N
∈
ℕ
106
zmulcl
⊢
A
∈
ℤ
∧
C
∈
ℤ
→
A
C
∈
ℤ
107
106
3adant2
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
→
A
C
∈
ℤ
108
107
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
C
∈
ℤ
109
zmulcl
⊢
B
∈
ℤ
∧
C
∈
ℤ
→
B
C
∈
ℤ
110
109
3adant1
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
→
B
C
∈
ℤ
111
110
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
B
C
∈
ℤ
112
moddvds
⊢
N
∈
ℕ
∧
A
C
∈
ℤ
∧
B
C
∈
ℤ
→
A
C
mod
N
=
B
C
mod
N
↔
N
∥
A
C
−
B
C
113
105
108
111
112
syl3anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
C
mod
N
=
B
C
mod
N
↔
N
∥
A
C
−
B
C
114
113
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
→
A
C
mod
N
=
B
C
mod
N
↔
N
∥
A
C
−
B
C
115
104
114
sylibrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
C
≠
0
→
∃
k
∈
ℤ
k
N
C
gcd
N
=
A
−
B
→
A
C
mod
N
=
B
C
mod
N
116
115
ex
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
C
≠
0
→
∃
k
∈
ℤ
k
N
C
gcd
N
=
A
−
B
→
A
C
mod
N
=
B
C
mod
N
117
116
com23
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
∃
k
∈
ℤ
k
N
C
gcd
N
=
A
−
B
→
C
≠
0
→
A
C
mod
N
=
B
C
mod
N
118
37
117
sylbid
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
mod
M
=
B
mod
M
→
C
≠
0
→
A
C
mod
N
=
B
C
mod
N
119
118
imp
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
A
mod
M
=
B
mod
M
→
C
≠
0
→
A
C
mod
N
=
B
C
mod
N
120
119
com12
⊢
C
≠
0
→
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
A
mod
M
=
B
mod
M
→
A
C
mod
N
=
B
C
mod
N
121
16
120
pm2.61ine
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
∧
A
mod
M
=
B
mod
M
→
A
C
mod
N
=
B
C
mod
N
122
121
ex
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
C
∈
ℤ
∧
N
∈
ℕ
∧
M
=
N
C
gcd
N
→
A
mod
M
=
B
mod
M
→
A
C
mod
N
=
B
C
mod
N