Metamath Proof Explorer


Theorem cnextfres1

Description: F and its extension by continuity agree on the domain of F . (Contributed by Thierry Arnoux, 17-Jan-2018)

Ref Expression
Hypotheses cnextf.1 C=J
cnextf.2 B=K
cnextf.3 φJTop
cnextf.4 φKHaus
cnextf.5 φF:AB
cnextf.a φAC
cnextf.6 φclsJA=C
cnextf.7 φxCKfLimfneiJx𝑡AF
cnextcn.8 φKReg
cnextfres1.1 φFJ𝑡ACnK
Assertion cnextfres1 φJCnExtKFA=F

Proof

Step Hyp Ref Expression
1 cnextf.1 C=J
2 cnextf.2 B=K
3 cnextf.3 φJTop
4 cnextf.4 φKHaus
5 cnextf.5 φF:AB
6 cnextf.a φAC
7 cnextf.6 φclsJA=C
8 cnextf.7 φxCKfLimfneiJx𝑡AF
9 cnextcn.8 φKReg
10 cnextfres1.1 φFJ𝑡ACnK
11 1 2 3 4 5 6 7 8 cnextf φJCnExtKF:CB
12 11 ffnd φJCnExtKFFnC
13 fnssres JCnExtKFFnCACJCnExtKFAFnA
14 12 6 13 syl2anc φJCnExtKFAFnA
15 5 ffnd φFFnA
16 fvres yAJCnExtKFAy=JCnExtKFy
17 16 adantl φyAJCnExtKFAy=JCnExtKFy
18 6 sselda φyAyC
19 1 2 3 4 5 6 7 8 cnextfvval φyCJCnExtKFy=KfLimfneiJy𝑡AF
20 18 19 syldan φyAJCnExtKFy=KfLimfneiJy𝑡AF
21 5 ffvelcdmda φyAFyB
22 simpr φyAyA
23 1 restuni JTopACA=J𝑡A
24 3 6 23 syl2anc φA=J𝑡A
25 24 adantr φyAA=J𝑡A
26 22 25 eleqtrd φyAyJ𝑡A
27 fvex clsJAV
28 7 27 eqeltrrdi φCV
29 28 6 ssexd φAV
30 resttop JTopAVJ𝑡ATop
31 3 29 30 syl2anc φJ𝑡ATop
32 haustop KHausKTop
33 4 32 syl φKTop
34 24 feq2d φF:ABF:J𝑡AB
35 5 34 mpbid φF:J𝑡AB
36 eqid J𝑡A=J𝑡A
37 36 2 cnnei J𝑡ATopKTopF:J𝑡ABFJ𝑡ACnKyJ𝑡AwneiKFyvneiJ𝑡AyFvw
38 31 33 35 37 syl3anc φFJ𝑡ACnKyJ𝑡AwneiKFyvneiJ𝑡AyFvw
39 10 38 mpbid φyJ𝑡AwneiKFyvneiJ𝑡AyFvw
40 39 r19.21bi φyJ𝑡AwneiKFyvneiJ𝑡AyFvw
41 26 40 syldan φyAwneiKFyvneiJ𝑡AyFvw
42 41 r19.21bi φyAwneiKFyvneiJ𝑡AyFvw
43 snssi yAyA
44 1 neitr JTopACyAneiJ𝑡Ay=neiJy𝑡A
45 3 6 43 44 syl2an3an φyAneiJ𝑡Ay=neiJy𝑡A
46 45 rexeqdv φyAvneiJ𝑡AyFvwvneiJy𝑡AFvw
47 46 adantr φyAwneiKFyvneiJ𝑡AyFvwvneiJy𝑡AFvw
48 42 47 mpbid φyAwneiKFyvneiJy𝑡AFvw
49 48 ralrimiva φyAwneiKFyvneiJy𝑡AFvw
50 4 adantr φyAKHaus
51 2 toptopon KTopKTopOnB
52 51 biimpi KTopKTopOnB
53 50 32 52 3syl φyAKTopOnB
54 7 adantr φyAclsJA=C
55 18 54 eleqtrrd φyAyclsJA
56 1 toptopon JTopJTopOnC
57 3 56 sylib φJTopOnC
58 57 adantr φyAJTopOnC
59 6 adantr φyAAC
60 trnei JTopOnCACyCyclsJAneiJy𝑡AFilA
61 58 59 18 60 syl3anc φyAyclsJAneiJy𝑡AFilA
62 55 61 mpbid φyAneiJy𝑡AFilA
63 5 adantr φyAF:AB
64 flfnei KTopOnBneiJy𝑡AFilAF:ABFyKfLimfneiJy𝑡AFFyBwneiKFyvneiJy𝑡AFvw
65 53 62 63 64 syl3anc φyAFyKfLimfneiJy𝑡AFFyBwneiKFyvneiJy𝑡AFvw
66 21 49 65 mpbir2and φyAFyKfLimfneiJy𝑡AF
67 eleq1w x=yxCyC
68 67 anbi2d x=yφxCφyC
69 sneq x=yx=y
70 69 fveq2d x=yneiJx=neiJy
71 70 oveq1d x=yneiJx𝑡A=neiJy𝑡A
72 71 oveq2d x=yKfLimfneiJx𝑡A=KfLimfneiJy𝑡A
73 72 fveq1d x=yKfLimfneiJx𝑡AF=KfLimfneiJy𝑡AF
74 73 neeq1d x=yKfLimfneiJx𝑡AFKfLimfneiJy𝑡AF
75 68 74 imbi12d x=yφxCKfLimfneiJx𝑡AFφyCKfLimfneiJy𝑡AF
76 75 8 chvarvv φyCKfLimfneiJy𝑡AF
77 18 76 syldan φyAKfLimfneiJy𝑡AF
78 2 hausflf2 KHausneiJy𝑡AFilAF:ABKfLimfneiJy𝑡AFKfLimfneiJy𝑡AF1𝑜
79 50 62 63 77 78 syl31anc φyAKfLimfneiJy𝑡AF1𝑜
80 en1eqsn FyKfLimfneiJy𝑡AFKfLimfneiJy𝑡AF1𝑜KfLimfneiJy𝑡AF=Fy
81 66 79 80 syl2anc φyAKfLimfneiJy𝑡AF=Fy
82 81 unieqd φyAKfLimfneiJy𝑡AF=Fy
83 fvex FyV
84 83 unisn Fy=Fy
85 82 84 eqtrdi φyAKfLimfneiJy𝑡AF=Fy
86 17 20 85 3eqtrd φyAJCnExtKFAy=Fy
87 14 15 86 eqfnfvd φJCnExtKFA=F