Metamath Proof Explorer


Theorem cnlnadjlem2

Description: Lemma for cnlnadji . G is a continuous linear functional. (Contributed by NM, 16-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 TLinOp
cnlnadjlem.2 TContOp
cnlnadjlem.3 G=gTgihy
Assertion cnlnadjlem2 yGLinFnGContFn

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 TLinOp
2 cnlnadjlem.2 TContOp
3 cnlnadjlem.3 G=gTgihy
4 1 lnopfi T:
5 4 ffvelcdmi gTg
6 hicl TgyTgihy
7 5 6 sylan gyTgihy
8 7 ancoms ygTgihy
9 8 3 fmptd yG:
10 hvmulcl xwxw
11 1 lnopaddi xwzTxw+z=Txw+Tz
12 11 3adant3 xwzyTxw+z=Txw+Tz
13 12 oveq1d xwzyTxw+zihy=Txw+Tzihy
14 4 ffvelcdmi xwTxw
15 4 ffvelcdmi zTz
16 id yy
17 ax-his2 TxwTzyTxw+Tzihy=Txwihy+Tzihy
18 14 15 16 17 syl3an xwzyTxw+Tzihy=Txwihy+Tzihy
19 13 18 eqtrd xwzyTxw+zihy=Txwihy+Tzihy
20 19 3comr yxwzTxw+zihy=Txwihy+Tzihy
21 20 3expa yxwzTxw+zihy=Txwihy+Tzihy
22 10 21 sylanl2 yxwzTxw+zihy=Txwihy+Tzihy
23 hvaddcl xwzxw+z
24 10 23 sylan xwzxw+z
25 1 2 3 cnlnadjlem1 xw+zGxw+z=Txw+zihy
26 24 25 syl xwzGxw+z=Txw+zihy
27 26 adantll yxwzGxw+z=Txw+zihy
28 4 ffvelcdmi wTw
29 ax-his3 xTwyxTwihy=xTwihy
30 28 29 syl3an2 xwyxTwihy=xTwihy
31 30 3comr yxwxTwihy=xTwihy
32 31 3expb yxwxTwihy=xTwihy
33 1 lnopmuli xwTxw=xTw
34 33 oveq1d xwTxwihy=xTwihy
35 34 adantl yxwTxwihy=xTwihy
36 1 2 3 cnlnadjlem1 wGw=Twihy
37 36 oveq2d wxGw=xTwihy
38 37 ad2antll yxwxGw=xTwihy
39 32 35 38 3eqtr4rd yxwxGw=Txwihy
40 1 2 3 cnlnadjlem1 zGz=Tzihy
41 39 40 oveqan12d yxwzxGw+Gz=Txwihy+Tzihy
42 22 27 41 3eqtr4d yxwzGxw+z=xGw+Gz
43 42 ralrimiva yxwzGxw+z=xGw+Gz
44 43 ralrimivva yxwzGxw+z=xGw+Gz
45 ellnfn GLinFnG:xwzGxw+z=xGw+Gz
46 9 44 45 sylanbrc yGLinFn
47 1 2 nmcopexi normopT
48 normcl ynormy
49 remulcl normopTnormynormopTnormy
50 47 48 49 sylancr ynormopTnormy
51 40 adantr zyGz=Tzihy
52 hicl TzyTzihy
53 15 52 sylan zyTzihy
54 51 53 eqeltrd zyGz
55 54 abscld zyGz
56 normcl TznormTz
57 15 56 syl znormTz
58 remulcl normTznormynormTznormy
59 57 48 58 syl2an zynormTznormy
60 normcl znormz
61 remulcl normopTnormznormopTnormz
62 47 60 61 sylancr znormopTnormz
63 remulcl normopTnormznormynormopTnormznormy
64 62 48 63 syl2an zynormopTnormznormy
65 51 fveq2d zyGz=Tzihy
66 bcs TzyTzihynormTznormy
67 15 66 sylan zyTzihynormTznormy
68 65 67 eqbrtrd zyGznormTznormy
69 57 adantr zynormTz
70 62 adantr zynormopTnormz
71 normge0 y0normy
72 48 71 jca ynormy0normy
73 72 adantl zynormy0normy
74 1 2 nmcoplbi znormTznormopTnormz
75 74 adantr zynormTznormopTnormz
76 lemul1a normTznormopTnormznormy0normynormTznormopTnormznormTznormynormopTnormznormy
77 69 70 73 75 76 syl31anc zynormTznormynormopTnormznormy
78 55 59 64 68 77 letrd zyGznormopTnormznormy
79 60 recnd znormz
80 48 recnd ynormy
81 47 recni normopT
82 mul32 normopTnormznormynormopTnormznormy=normopTnormynormz
83 81 82 mp3an1 normznormynormopTnormznormy=normopTnormynormz
84 79 80 83 syl2an zynormopTnormznormy=normopTnormynormz
85 78 84 breqtrd zyGznormopTnormynormz
86 85 ancoms yzGznormopTnormynormz
87 86 ralrimiva yzGznormopTnormynormz
88 oveq1 x=normopTnormyxnormz=normopTnormynormz
89 88 breq2d x=normopTnormyGzxnormzGznormopTnormynormz
90 89 ralbidv x=normopTnormyzGzxnormzzGznormopTnormynormz
91 90 rspcev normopTnormyzGznormopTnormynormzxzGzxnormz
92 50 87 91 syl2anc yxzGzxnormz
93 lnfncon GLinFnGContFnxzGzxnormz
94 46 93 syl yGContFnxzGzxnormz
95 92 94 mpbird yGContFn
96 46 95 jca yGLinFnGContFn