Metamath Proof Explorer


Theorem cnpart

Description: The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map x |-> -u x ). (Contributed by Mario Carneiro, 8-Jul-2013)

Ref Expression
Assertion cnpart AA00AiA+¬0AiA+

Proof

Step Hyp Ref Expression
1 df-nel iA+¬iA+
2 simpr AA0A=0A=0
3 0le0 00
4 2 3 eqbrtrdi AA0A=0A0
5 4 biantrurd AA0A=0iA+A0iA+
6 1 5 bitr3id AA0A=0¬iA+A0iA+
7 6 con1bid AA0A=0¬A0iA+iA+
8 ax-icn i
9 mulcl iAiA
10 8 9 mpan AiA
11 reim0b iAiAiA=0
12 10 11 syl AiAiA=0
13 imre iAiA=iiA
14 10 13 syl AiA=iiA
15 ine0 i0
16 divrec2 iAii0iAi=1iiA
17 8 15 16 mp3an23 iAiAi=1iiA
18 10 17 syl AiAi=1iiA
19 irec 1i=i
20 19 oveq1i 1iiA=iiA
21 18 20 eqtrdi AiAi=iiA
22 divcan3 Aii0iAi=A
23 8 15 22 mp3an23 AiAi=A
24 21 23 eqtr3d AiiA=A
25 24 fveq2d AiiA=A
26 14 25 eqtrd AiA=A
27 26 eqeq1d AiA=0A=0
28 12 27 bitrd AiAA=0
29 28 biimpar AA=0iA
30 29 adantlr AA0A=0iA
31 mulne0 ii0AA0iA0
32 8 15 31 mpanl12 AA0iA0
33 32 adantr AA0A=0iA0
34 rpneg iAiA0iA+¬iA+
35 30 33 34 syl2anc AA0A=0iA+¬iA+
36 35 con2bid AA0A=0iA+¬iA+
37 df-nel iA+¬iA+
38 36 37 bitr4di AA0A=0iA+iA+
39 3 2 breqtrrid AA0A=00A
40 39 biantrurd AA0A=0iA+0AiA+
41 7 38 40 3bitrrd AA0A=00AiA+¬A0iA+
42 28 adantr AA0iAA=0
43 42 necon3bbid AA0¬iAA0
44 43 biimpar AA0A0¬iA
45 rpre iA+iA
46 44 45 nsyl AA0A0¬iA+
47 46 37 sylibr AA0A0iA+
48 47 biantrud AA0A00A0AiA+
49 simpr AA0A0A0
50 49 biantrud AA0A00A0AA0
51 0re 0
52 recl AA
53 ltlen 0A0<A0AA0
54 ltnle 0A0<A¬A0
55 53 54 bitr3d 0A0AA0¬A0
56 51 52 55 sylancr A0AA0¬A0
57 56 ad2antrr AA0A00AA0¬A0
58 50 57 bitrd AA0A00A¬A0
59 48 58 bitr3d AA0A00AiA+¬A0
60 renegcl iAiA
61 10 negnegd AiA=iA
62 61 eleq1d AiAiA
63 62 ad2antrr AA0A0iAiA
64 60 63 imbitrid AA0A0iAiA
65 44 64 mtod AA0A0¬iA
66 rpre iA+iA
67 65 66 nsyl AA0A0¬iA+
68 67 1 sylibr AA0A0iA+
69 68 biantrud AA0A0A0A0iA+
70 69 notbid AA0A0¬A0¬A0iA+
71 59 70 bitrd AA0A00AiA+¬A0iA+
72 41 71 pm2.61dane AA00AiA+¬A0iA+
73 reneg AA=A
74 73 breq2d A0A0A
75 52 le0neg1d AA00A
76 74 75 bitr4d A0AA0
77 mulneg2 iAiA=iA
78 8 77 mpan AiA=iA
79 neleq1 iA=iAiA+iA+
80 78 79 syl AiA+iA+
81 76 80 anbi12d A0AiA+A0iA+
82 81 notbid A¬0AiA+¬A0iA+
83 82 adantr AA0¬0AiA+¬A0iA+
84 72 83 bitr4d AA00AiA+¬0AiA+