Metamath Proof Explorer


Theorem coe1tmmul

Description: Coefficient vector of a polynomial multiplied on the left by a term. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses coe1tm.z 0˙=0R
coe1tm.k K=BaseR
coe1tm.p P=Poly1R
coe1tm.x X=var1R
coe1tm.m ·˙=P
coe1tm.n N=mulGrpP
coe1tm.e ×˙=N
coe1tmmul.b B=BaseP
coe1tmmul.t ˙=P
coe1tmmul.u ×˙=R
coe1tmmul.a φAB
coe1tmmul.r φRRing
coe1tmmul.c φCK
coe1tmmul.d φD0
Assertion coe1tmmul φcoe1C·˙D×˙X˙A=x0ifDxC×˙coe1AxD0˙

Proof

Step Hyp Ref Expression
1 coe1tm.z 0˙=0R
2 coe1tm.k K=BaseR
3 coe1tm.p P=Poly1R
4 coe1tm.x X=var1R
5 coe1tm.m ·˙=P
6 coe1tm.n N=mulGrpP
7 coe1tm.e ×˙=N
8 coe1tmmul.b B=BaseP
9 coe1tmmul.t ˙=P
10 coe1tmmul.u ×˙=R
11 coe1tmmul.a φAB
12 coe1tmmul.r φRRing
13 coe1tmmul.c φCK
14 coe1tmmul.d φD0
15 2 3 4 5 6 7 8 ply1tmcl RRingCKD0C·˙D×˙XB
16 12 13 14 15 syl3anc φC·˙D×˙XB
17 3 9 10 8 coe1mul RRingC·˙D×˙XBABcoe1C·˙D×˙X˙A=x0Ry=0xcoe1C·˙D×˙Xy×˙coe1Axy
18 12 16 11 17 syl3anc φcoe1C·˙D×˙X˙A=x0Ry=0xcoe1C·˙D×˙Xy×˙coe1Axy
19 eqeq2 C×˙coe1AxD=ifDxC×˙coe1AxD0˙Ry=0xcoe1C·˙D×˙Xy×˙coe1Axy=C×˙coe1AxDRy=0xcoe1C·˙D×˙Xy×˙coe1Axy=ifDxC×˙coe1AxD0˙
20 eqeq2 0˙=ifDxC×˙coe1AxD0˙Ry=0xcoe1C·˙D×˙Xy×˙coe1Axy=0˙Ry=0xcoe1C·˙D×˙Xy×˙coe1Axy=ifDxC×˙coe1AxD0˙
21 12 ad2antrr φx0DxRRing
22 ringmnd RRingRMnd
23 21 22 syl φx0DxRMnd
24 ovexd φx0Dx0xV
25 14 ad2antrr φx0DxD0
26 simpr φx0DxDx
27 fznn0 x0D0xD0Dx
28 27 ad2antlr φx0DxD0xD0Dx
29 25 26 28 mpbir2and φx0DxD0x
30 12 ad2antrr φx0y0xRRing
31 eqid coe1C·˙D×˙X=coe1C·˙D×˙X
32 31 8 3 2 coe1f C·˙D×˙XBcoe1C·˙D×˙X:0K
33 16 32 syl φcoe1C·˙D×˙X:0K
34 33 adantr φx0coe1C·˙D×˙X:0K
35 elfznn0 y0xy0
36 ffvelcdm coe1C·˙D×˙X:0Ky0coe1C·˙D×˙XyK
37 34 35 36 syl2an φx0y0xcoe1C·˙D×˙XyK
38 eqid coe1A=coe1A
39 38 8 3 2 coe1f ABcoe1A:0K
40 11 39 syl φcoe1A:0K
41 40 adantr φx0coe1A:0K
42 fznn0sub y0xxy0
43 ffvelcdm coe1A:0Kxy0coe1AxyK
44 41 42 43 syl2an φx0y0xcoe1AxyK
45 2 10 ringcl RRingcoe1C·˙D×˙XyKcoe1AxyKcoe1C·˙D×˙Xy×˙coe1AxyK
46 30 37 44 45 syl3anc φx0y0xcoe1C·˙D×˙Xy×˙coe1AxyK
47 46 fmpttd φx0y0xcoe1C·˙D×˙Xy×˙coe1Axy:0xK
48 47 adantr φx0Dxy0xcoe1C·˙D×˙Xy×˙coe1Axy:0xK
49 12 ad3antrrr φx0Dxy0xDRRing
50 13 ad3antrrr φx0Dxy0xDCK
51 14 ad3antrrr φx0Dxy0xDD0
52 eldifi y0xDy0x
53 52 35 syl y0xDy0
54 53 adantl φx0Dxy0xDy0
55 eldifsni y0xDyD
56 55 necomd y0xDDy
57 56 adantl φx0Dxy0xDDy
58 1 2 3 4 5 6 7 49 50 51 54 57 coe1tmfv2 φx0Dxy0xDcoe1C·˙D×˙Xy=0˙
59 58 oveq1d φx0Dxy0xDcoe1C·˙D×˙Xy×˙coe1Axy=0˙×˙coe1Axy
60 2 10 1 ringlz RRingcoe1AxyK0˙×˙coe1Axy=0˙
61 30 44 60 syl2anc φx0y0x0˙×˙coe1Axy=0˙
62 52 61 sylan2 φx0y0xD0˙×˙coe1Axy=0˙
63 62 adantlr φx0Dxy0xD0˙×˙coe1Axy=0˙
64 59 63 eqtrd φx0Dxy0xDcoe1C·˙D×˙Xy×˙coe1Axy=0˙
65 64 24 suppss2 φx0Dxy0xcoe1C·˙D×˙Xy×˙coe1Axysupp0˙D
66 2 1 23 24 29 48 65 gsumpt φx0DxRy=0xcoe1C·˙D×˙Xy×˙coe1Axy=y0xcoe1C·˙D×˙Xy×˙coe1AxyD
67 fveq2 y=Dcoe1C·˙D×˙Xy=coe1C·˙D×˙XD
68 oveq2 y=Dxy=xD
69 68 fveq2d y=Dcoe1Axy=coe1AxD
70 67 69 oveq12d y=Dcoe1C·˙D×˙Xy×˙coe1Axy=coe1C·˙D×˙XD×˙coe1AxD
71 eqid y0xcoe1C·˙D×˙Xy×˙coe1Axy=y0xcoe1C·˙D×˙Xy×˙coe1Axy
72 ovex coe1C·˙D×˙XD×˙coe1AxDV
73 70 71 72 fvmpt D0xy0xcoe1C·˙D×˙Xy×˙coe1AxyD=coe1C·˙D×˙XD×˙coe1AxD
74 29 73 syl φx0Dxy0xcoe1C·˙D×˙Xy×˙coe1AxyD=coe1C·˙D×˙XD×˙coe1AxD
75 1 2 3 4 5 6 7 coe1tmfv1 RRingCKD0coe1C·˙D×˙XD=C
76 12 13 14 75 syl3anc φcoe1C·˙D×˙XD=C
77 76 ad2antrr φx0Dxcoe1C·˙D×˙XD=C
78 77 oveq1d φx0Dxcoe1C·˙D×˙XD×˙coe1AxD=C×˙coe1AxD
79 74 78 eqtrd φx0Dxy0xcoe1C·˙D×˙Xy×˙coe1AxyD=C×˙coe1AxD
80 66 79 eqtrd φx0DxRy=0xcoe1C·˙D×˙Xy×˙coe1Axy=C×˙coe1AxD
81 12 ad3antrrr φx0¬Dxy0xRRing
82 13 ad3antrrr φx0¬Dxy0xCK
83 14 ad3antrrr φx0¬Dxy0xD0
84 35 adantl φx0¬Dxy0xy0
85 elfzle2 y0xyx
86 85 adantl φx0y0xyx
87 breq1 D=yDxyx
88 86 87 syl5ibrcom φx0y0xD=yDx
89 88 necon3bd φx0y0x¬DxDy
90 89 imp φx0y0x¬DxDy
91 90 an32s φx0¬Dxy0xDy
92 1 2 3 4 5 6 7 81 82 83 84 91 coe1tmfv2 φx0¬Dxy0xcoe1C·˙D×˙Xy=0˙
93 92 oveq1d φx0¬Dxy0xcoe1C·˙D×˙Xy×˙coe1Axy=0˙×˙coe1Axy
94 61 adantlr φx0¬Dxy0x0˙×˙coe1Axy=0˙
95 93 94 eqtrd φx0¬Dxy0xcoe1C·˙D×˙Xy×˙coe1Axy=0˙
96 95 mpteq2dva φx0¬Dxy0xcoe1C·˙D×˙Xy×˙coe1Axy=y0x0˙
97 96 oveq2d φx0¬DxRy=0xcoe1C·˙D×˙Xy×˙coe1Axy=Ry=0x0˙
98 12 22 syl φRMnd
99 98 ad2antrr φx0¬DxRMnd
100 ovexd φx0¬Dx0xV
101 1 gsumz RMnd0xVRy=0x0˙=0˙
102 99 100 101 syl2anc φx0¬DxRy=0x0˙=0˙
103 97 102 eqtrd φx0¬DxRy=0xcoe1C·˙D×˙Xy×˙coe1Axy=0˙
104 19 20 80 103 ifbothda φx0Ry=0xcoe1C·˙D×˙Xy×˙coe1Axy=ifDxC×˙coe1AxD0˙
105 104 mpteq2dva φx0Ry=0xcoe1C·˙D×˙Xy×˙coe1Axy=x0ifDxC×˙coe1AxD0˙
106 18 105 eqtrd φcoe1C·˙D×˙X˙A=x0ifDxC×˙coe1AxD0˙