Step |
Hyp |
Ref |
Expression |
1 |
|
cycpm2.c |
|
2 |
|
cycpm2.d |
|
3 |
|
cycpm2.i |
|
4 |
|
cycpm2.j |
|
5 |
|
cycpm2.1 |
|
6 |
|
cycpm2tr.t |
|
7 |
|
partfun |
|
8 |
7
|
a1i |
|
9 |
|
cshw1s2 |
|
10 |
3 4 9
|
syl2anc |
|
11 |
10
|
coeq1d |
|
12 |
|
0nn0 |
|
13 |
12
|
a1i |
|
14 |
|
1nn0 |
|
15 |
14
|
a1i |
|
16 |
|
0ne1 |
|
17 |
16
|
a1i |
|
18 |
13 4 15 3 17 3 4 5
|
coprprop |
|
19 |
|
s2prop |
|
20 |
4 3 19
|
syl2anc |
|
21 |
|
s2prop |
|
22 |
3 4 21
|
syl2anc |
|
23 |
22
|
cnveqd |
|
24 |
|
cnvprop |
|
25 |
13 3 15 4 24
|
syl22anc |
|
26 |
23 25
|
eqtrd |
|
27 |
20 26
|
coeq12d |
|
28 |
3 4 4 3 5
|
mptprop |
|
29 |
3 4
|
prssd |
|
30 |
|
df-ss |
|
31 |
29 30
|
sylib |
|
32 |
|
incom |
|
33 |
31 32
|
eqtr3di |
|
34 |
|
simpr |
|
35 |
34
|
sneqd |
|
36 |
35
|
difeq2d |
|
37 |
36
|
unieqd |
|
38 |
|
difprsn1 |
|
39 |
38
|
unieqd |
|
40 |
5 39
|
syl |
|
41 |
|
unisng |
|
42 |
4 41
|
syl |
|
43 |
40 42
|
eqtrd |
|
44 |
43
|
ad2antrr |
|
45 |
37 44
|
eqtr2d |
|
46 |
|
vex |
|
47 |
46
|
elpr |
|
48 |
|
df-or |
|
49 |
47 48
|
sylbb |
|
50 |
49
|
imp |
|
51 |
50
|
adantll |
|
52 |
51
|
sneqd |
|
53 |
52
|
difeq2d |
|
54 |
53
|
unieqd |
|
55 |
|
difprsn2 |
|
56 |
55
|
unieqd |
|
57 |
5 56
|
syl |
|
58 |
|
unisng |
|
59 |
3 58
|
syl |
|
60 |
57 59
|
eqtrd |
|
61 |
60
|
ad2antrr |
|
62 |
54 61
|
eqtr2d |
|
63 |
45 62
|
ifeqda |
|
64 |
33 63
|
mpteq12dva |
|
65 |
28 64
|
eqtr2d |
|
66 |
18 27 65
|
3eqtr4d |
|
67 |
11 66
|
eqtrd |
|
68 |
3 4
|
s2rn |
|
69 |
68
|
difeq2d |
|
70 |
69
|
reseq2d |
|
71 |
|
mptresid |
|
72 |
70 71
|
eqtrdi |
|
73 |
67 72
|
uneq12d |
|
74 |
|
uncom |
|
75 |
74
|
a1i |
|
76 |
8 73 75
|
3eqtr2rd |
|
77 |
3 4
|
s2cld |
|
78 |
3 4 5
|
s2f1 |
|
79 |
1 2 77 78
|
tocycfv |
|
80 |
|
pr2nelem |
|
81 |
3 4 5 80
|
syl3anc |
|
82 |
6
|
pmtrval |
|
83 |
2 29 81 82
|
syl3anc |
|
84 |
76 79 83
|
3eqtr4d |
|