Metamath Proof Explorer


Theorem dihglb2

Description: Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014)

Ref Expression
Hypotheses dihglb.b B=BaseK
dihglb.g G=glbK
dihglb.h H=LHypK
dihglb.i I=DIsoHKW
dihglb2.u U=DVecHKW
dihglb2.v V=BaseU
Assertion dihglb2 KHLWHSVIGxB|SIx=yranI|Sy

Proof

Step Hyp Ref Expression
1 dihglb.b B=BaseK
2 dihglb.g G=glbK
3 dihglb.h H=LHypK
4 dihglb.i I=DIsoHKW
5 dihglb2.u U=DVecHKW
6 dihglb2.v V=BaseU
7 simpl KHLWHSVKHLWH
8 ssrab2 xB|SIxB
9 8 a1i KHLWHSVxB|SIxB
10 hlop KHLKOP
11 10 ad2antrr KHLWHSVKOP
12 eqid 1.K=1.K
13 1 12 op1cl KOP1.KB
14 11 13 syl KHLWHSV1.KB
15 simpr KHLWHSVSV
16 12 3 4 5 6 dih1 KHLWHI1.K=V
17 16 adantr KHLWHSVI1.K=V
18 15 17 sseqtrrd KHLWHSVSI1.K
19 fveq2 x=1.KIx=I1.K
20 19 sseq2d x=1.KSIxSI1.K
21 20 elrab 1.KxB|SIx1.KBSI1.K
22 14 18 21 sylanbrc KHLWHSV1.KxB|SIx
23 22 ne0d KHLWHSVxB|SIx
24 1 2 3 4 dihglb KHLWHxB|SIxBxB|SIxIGxB|SIx=zxB|SIxIz
25 7 9 23 24 syl12anc KHLWHSVIGxB|SIx=zxB|SIxIz
26 fvex IzV
27 26 dfiin2 zxB|SIxIz=y|zxB|SIxy=Iz
28 1 3 4 dihfn KHLWHIFnB
29 28 ad2antrr KHLWHSVSyIFnB
30 fvelrnb IFnByranIzBIz=y
31 29 30 syl KHLWHSVSyyranIzBIz=y
32 eqcom Iz=yy=Iz
33 32 rexbii zBIz=yzBy=Iz
34 df-rex zBy=IzzzBy=Iz
35 33 34 bitri zBIz=yzzBy=Iz
36 31 35 bitrdi KHLWHSVSyyranIzzBy=Iz
37 36 ex KHLWHSVSyyranIzzBy=Iz
38 37 pm5.32rd KHLWHSVyranISyzzBy=IzSy
39 df-rex zxB|SIxy=IzzzxB|SIxy=Iz
40 fveq2 x=zIx=Iz
41 40 sseq2d x=zSIxSIz
42 41 elrab zxB|SIxzBSIz
43 42 anbi1i zxB|SIxy=IzzBSIzy=Iz
44 sseq2 y=IzSySIz
45 44 anbi2d y=IzzBSyzBSIz
46 45 pm5.32ri zBSyy=IzzBSIzy=Iz
47 an32 zBSyy=IzzBy=IzSy
48 43 46 47 3bitr2i zxB|SIxy=IzzBy=IzSy
49 48 exbii zzxB|SIxy=IzzzBy=IzSy
50 19.41v zzBy=IzSyzzBy=IzSy
51 39 49 50 3bitrri zzBy=IzSyzxB|SIxy=Iz
52 38 51 bitr2di KHLWHSVzxB|SIxy=IzyranISy
53 52 abbidv KHLWHSVy|zxB|SIxy=Iz=y|yranISy
54 df-rab yranI|Sy=y|yranISy
55 53 54 eqtr4di KHLWHSVy|zxB|SIxy=Iz=yranI|Sy
56 55 inteqd KHLWHSVy|zxB|SIxy=Iz=yranI|Sy
57 27 56 eqtrid KHLWHSVzxB|SIxIz=yranI|Sy
58 25 57 eqtrd KHLWHSVIGxB|SIx=yranI|Sy