Description: Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihglb.b | |
|
dihglb.g | |
||
dihglb.h | |
||
dihglb.i | |
||
dihglb2.u | |
||
dihglb2.v | |
||
Assertion | dihglb2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihglb.b | |
|
2 | dihglb.g | |
|
3 | dihglb.h | |
|
4 | dihglb.i | |
|
5 | dihglb2.u | |
|
6 | dihglb2.v | |
|
7 | simpl | |
|
8 | ssrab2 | |
|
9 | 8 | a1i | |
10 | hlop | |
|
11 | 10 | ad2antrr | |
12 | eqid | |
|
13 | 1 12 | op1cl | |
14 | 11 13 | syl | |
15 | simpr | |
|
16 | 12 3 4 5 6 | dih1 | |
17 | 16 | adantr | |
18 | 15 17 | sseqtrrd | |
19 | fveq2 | |
|
20 | 19 | sseq2d | |
21 | 20 | elrab | |
22 | 14 18 21 | sylanbrc | |
23 | 22 | ne0d | |
24 | 1 2 3 4 | dihglb | |
25 | 7 9 23 24 | syl12anc | |
26 | fvex | |
|
27 | 26 | dfiin2 | |
28 | 1 3 4 | dihfn | |
29 | 28 | ad2antrr | |
30 | fvelrnb | |
|
31 | 29 30 | syl | |
32 | eqcom | |
|
33 | 32 | rexbii | |
34 | df-rex | |
|
35 | 33 34 | bitri | |
36 | 31 35 | bitrdi | |
37 | 36 | ex | |
38 | 37 | pm5.32rd | |
39 | df-rex | |
|
40 | fveq2 | |
|
41 | 40 | sseq2d | |
42 | 41 | elrab | |
43 | 42 | anbi1i | |
44 | sseq2 | |
|
45 | 44 | anbi2d | |
46 | 45 | pm5.32ri | |
47 | an32 | |
|
48 | 43 46 47 | 3bitr2i | |
49 | 48 | exbii | |
50 | 19.41v | |
|
51 | 39 49 50 | 3bitrri | |
52 | 38 51 | bitr2di | |
53 | 52 | abbidv | |
54 | df-rab | |
|
55 | 53 54 | eqtr4di | |
56 | 55 | inteqd | |
57 | 27 56 | eqtrid | |
58 | 25 57 | eqtrd | |