Metamath Proof Explorer


Theorem dihmeetlem2N

Description: Isomorphism H of a conjunction. (Contributed by NM, 22-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem2.b B=BaseK
dihmeetlem2.m ˙=meetK
dihmeetlem2.h H=LHypK
dihmeetlem2.i I=DIsoHKW
dihmeetlem2.l ˙=K
dihmeetlem2.j ˙=joinK
dihmeetlem2.a A=AtomsK
dihmeetlem2.p P=ocKW
dihmeetlem2.t T=LTrnKW
dihmeetlem2.r R=trLKW
dihmeetlem2.e E=TEndoKW
dihmeetlem2.g G=ιhT|hP=q
dihmeetlem2.o 0˙=hTIB
Assertion dihmeetlem2N KHLWHXBX˙WYBY˙WIX˙Y=IXIY

Proof

Step Hyp Ref Expression
1 dihmeetlem2.b B=BaseK
2 dihmeetlem2.m ˙=meetK
3 dihmeetlem2.h H=LHypK
4 dihmeetlem2.i I=DIsoHKW
5 dihmeetlem2.l ˙=K
6 dihmeetlem2.j ˙=joinK
7 dihmeetlem2.a A=AtomsK
8 dihmeetlem2.p P=ocKW
9 dihmeetlem2.t T=LTrnKW
10 dihmeetlem2.r R=trLKW
11 dihmeetlem2.e E=TEndoKW
12 dihmeetlem2.g G=ιhT|hP=q
13 dihmeetlem2.o 0˙=hTIB
14 eqid glbK=glbK
15 simp1l KHLWHXBX˙WYBY˙WKHL
16 simp2l KHLWHXBX˙WYBY˙WXB
17 simp3l KHLWHXBX˙WYBY˙WYB
18 14 2 15 16 17 meetval KHLWHXBX˙WYBY˙WX˙Y=glbKXY
19 18 fveq2d KHLWHXBX˙WYBY˙WDIsoBKWX˙Y=DIsoBKWglbKXY
20 simp1 KHLWHXBX˙WYBY˙WKHLWH
21 eqid DIsoBKW=DIsoBKW
22 1 5 3 21 dibeldmN KHLWHXdomDIsoBKWXBX˙W
23 22 biimpar KHLWHXBX˙WXdomDIsoBKW
24 23 3adant3 KHLWHXBX˙WYBY˙WXdomDIsoBKW
25 1 5 3 21 dibeldmN KHLWHYdomDIsoBKWYBY˙W
26 25 biimpar KHLWHYBY˙WYdomDIsoBKW
27 26 3adant2 KHLWHXBX˙WYBY˙WYdomDIsoBKW
28 prssg XBYBXdomDIsoBKWYdomDIsoBKWXYdomDIsoBKW
29 16 17 28 syl2anc KHLWHXBX˙WYBY˙WXdomDIsoBKWYdomDIsoBKWXYdomDIsoBKW
30 24 27 29 mpbi2and KHLWHXBX˙WYBY˙WXYdomDIsoBKW
31 prnzg XBXY
32 16 31 syl KHLWHXBX˙WYBY˙WXY
33 14 3 21 dibglbN KHLWHXYdomDIsoBKWXYDIsoBKWglbKXY=xXYDIsoBKWx
34 20 30 32 33 syl12anc KHLWHXBX˙WYBY˙WDIsoBKWglbKXY=xXYDIsoBKWx
35 19 34 eqtrd KHLWHXBX˙WYBY˙WDIsoBKWX˙Y=xXYDIsoBKWx
36 15 hllatd KHLWHXBX˙WYBY˙WKLat
37 1 2 latmcl KLatXBYBX˙YB
38 36 16 17 37 syl3anc KHLWHXBX˙WYBY˙WX˙YB
39 simp1r KHLWHXBX˙WYBY˙WWH
40 1 3 lhpbase WHWB
41 39 40 syl KHLWHXBX˙WYBY˙WWB
42 1 5 2 latmle1 KLatXBYBX˙Y˙X
43 36 16 17 42 syl3anc KHLWHXBX˙WYBY˙WX˙Y˙X
44 simp2r KHLWHXBX˙WYBY˙WX˙W
45 1 5 36 38 16 41 43 44 lattrd KHLWHXBX˙WYBY˙WX˙Y˙W
46 1 5 3 4 21 dihvalb KHLWHX˙YBX˙Y˙WIX˙Y=DIsoBKWX˙Y
47 20 38 45 46 syl12anc KHLWHXBX˙WYBY˙WIX˙Y=DIsoBKWX˙Y
48 simpl1 KHLWHXBX˙WYBY˙WxXYKHLWH
49 vex xV
50 49 elpr xXYx=Xx=Y
51 simpl2 KHLWHXBX˙WYBY˙Wx=XXBX˙W
52 eleq1 x=XxBXB
53 breq1 x=Xx˙WX˙W
54 52 53 anbi12d x=XxBx˙WXBX˙W
55 54 adantl KHLWHXBX˙WYBY˙Wx=XxBx˙WXBX˙W
56 51 55 mpbird KHLWHXBX˙WYBY˙Wx=XxBx˙W
57 simpl3 KHLWHXBX˙WYBY˙Wx=YYBY˙W
58 eleq1 x=YxBYB
59 breq1 x=Yx˙WY˙W
60 58 59 anbi12d x=YxBx˙WYBY˙W
61 60 adantl KHLWHXBX˙WYBY˙Wx=YxBx˙WYBY˙W
62 57 61 mpbird KHLWHXBX˙WYBY˙Wx=YxBx˙W
63 56 62 jaodan KHLWHXBX˙WYBY˙Wx=Xx=YxBx˙W
64 50 63 sylan2b KHLWHXBX˙WYBY˙WxXYxBx˙W
65 1 5 3 4 21 dihvalb KHLWHxBx˙WIx=DIsoBKWx
66 48 64 65 syl2anc KHLWHXBX˙WYBY˙WxXYIx=DIsoBKWx
67 66 iineq2dv KHLWHXBX˙WYBY˙WxXYIx=xXYDIsoBKWx
68 35 47 67 3eqtr4d KHLWHXBX˙WYBY˙WIX˙Y=xXYIx
69 fveq2 x=XIx=IX
70 fveq2 x=YIx=IY
71 69 70 iinxprg XBYBxXYIx=IXIY
72 16 17 71 syl2anc KHLWHXBX˙WYBY˙WxXYIx=IXIY
73 68 72 eqtrd KHLWHXBX˙WYBY˙WIX˙Y=IXIY