Metamath Proof Explorer


Theorem dihpN

Description: The value of isomorphism H at the fiducial atom P is determined by the vector <. 0 , S >. (the zero translation ltrnid and a nonzero member of the endomorphism ring). In particular, S can be replaced with the ring unit ` ( _I |`T ) . (Contributed by NM, 26-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihp.b B = Base K
dihp.h H = LHyp K
dihp.p P = oc K W
dihp.t T = LTrn K W
dihp.e E = TEndo K W
dihp.o O = f T I B
dihp.i I = DIsoH K W
dihp.u U = DVecH K W
dihp.n N = LSpan U
dihp.k φ K HL W H
dihp.s φ S E S O
Assertion dihpN φ I P = N I B S

Proof

Step Hyp Ref Expression
1 dihp.b B = Base K
2 dihp.h H = LHyp K
3 dihp.p P = oc K W
4 dihp.t T = LTrn K W
5 dihp.e E = TEndo K W
6 dihp.o O = f T I B
7 dihp.i I = DIsoH K W
8 dihp.u U = DVecH K W
9 dihp.n N = LSpan U
10 dihp.k φ K HL W H
11 dihp.s φ S E S O
12 eqid 0 U = 0 U
13 eqid LSAtoms U = LSAtoms U
14 2 8 10 dvhlvec φ U LVec
15 2 3 7 8 13 10 dihat φ I P LSAtoms U
16 eqid K = K
17 eqid Atoms K = Atoms K
18 16 17 2 3 lhpocnel2 K HL W H P Atoms K ¬ P K W
19 eqid ι f T | f P = P = ι f T | f P = P
20 1 16 17 2 4 19 ltrniotaidvalN K HL W H P Atoms K ¬ P K W ι f T | f P = P = I B
21 10 18 20 syl2anc2 φ ι f T | f P = P = I B
22 21 fveq2d φ S ι f T | f P = P = S I B
23 11 simpld φ S E
24 1 2 5 tendoid K HL W H S E S I B = I B
25 10 23 24 syl2anc φ S I B = I B
26 22 25 eqtr2d φ I B = S ι f T | f P = P
27 1 fvexi B V
28 resiexg B V I B V
29 27 28 mp1i φ I B V
30 eqeq1 g = I B g = s ι f T | f P = P I B = s ι f T | f P = P
31 30 anbi1d g = I B g = s ι f T | f P = P s E I B = s ι f T | f P = P s E
32 fveq1 s = S s ι f T | f P = P = S ι f T | f P = P
33 32 eqeq2d s = S I B = s ι f T | f P = P I B = S ι f T | f P = P
34 eleq1 s = S s E S E
35 33 34 anbi12d s = S I B = s ι f T | f P = P s E I B = S ι f T | f P = P S E
36 31 35 opelopabg I B V S E I B S g s | g = s ι f T | f P = P s E I B = S ι f T | f P = P S E
37 29 23 36 syl2anc φ I B S g s | g = s ι f T | f P = P s E I B = S ι f T | f P = P S E
38 26 23 37 mpbir2and φ I B S g s | g = s ι f T | f P = P s E
39 eqid DIsoC K W = DIsoC K W
40 16 17 2 39 7 dihvalcqat K HL W H P Atoms K ¬ P K W I P = DIsoC K W P
41 10 18 40 syl2anc2 φ I P = DIsoC K W P
42 16 17 2 3 4 5 39 dicval K HL W H P Atoms K ¬ P K W DIsoC K W P = g s | g = s ι f T | f P = P s E
43 10 18 42 syl2anc2 φ DIsoC K W P = g s | g = s ι f T | f P = P s E
44 41 43 eqtr2d φ g s | g = s ι f T | f P = P s E = I P
45 38 44 eleqtrd φ I B S I P
46 11 simprd φ S O
47 1 2 4 8 12 6 dvh0g K HL W H 0 U = I B O
48 10 47 syl φ 0 U = I B O
49 48 eqeq2d φ I B S = 0 U I B S = I B O
50 27 28 ax-mp I B V
51 4 fvexi T V
52 51 mptex f T I B V
53 6 52 eqeltri O V
54 50 53 opth2 I B S = I B O I B = I B S = O
55 54 simprbi I B S = I B O S = O
56 49 55 syl6bi φ I B S = 0 U S = O
57 56 necon3d φ S O I B S 0 U
58 46 57 mpd φ I B S 0 U
59 12 9 13 14 15 45 58 lsatel φ I P = N I B S