Description: The value of isomorphism H at the fiducial atom P is determined by the vector <. 0 , S >. (the zero translation ltrnid and a nonzero member of the endomorphism ring). In particular, S can be replaced with the ring unity ` ( _I |`T ) . (Contributed by NM, 26-Aug-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihp.b | |
|
dihp.h | |
||
dihp.p | |
||
dihp.t | |
||
dihp.e | |
||
dihp.o | |
||
dihp.i | |
||
dihp.u | |
||
dihp.n | |
||
dihp.k | |
||
dihp.s | |
||
Assertion | dihpN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihp.b | |
|
2 | dihp.h | |
|
3 | dihp.p | |
|
4 | dihp.t | |
|
5 | dihp.e | |
|
6 | dihp.o | |
|
7 | dihp.i | |
|
8 | dihp.u | |
|
9 | dihp.n | |
|
10 | dihp.k | |
|
11 | dihp.s | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | 2 8 10 | dvhlvec | |
15 | 2 3 7 8 13 10 | dihat | |
16 | eqid | |
|
17 | eqid | |
|
18 | 16 17 2 3 | lhpocnel2 | |
19 | eqid | |
|
20 | 1 16 17 2 4 19 | ltrniotaidvalN | |
21 | 10 18 20 | syl2anc2 | |
22 | 21 | fveq2d | |
23 | 11 | simpld | |
24 | 1 2 5 | tendoid | |
25 | 10 23 24 | syl2anc | |
26 | 22 25 | eqtr2d | |
27 | 1 | fvexi | |
28 | resiexg | |
|
29 | 27 28 | mp1i | |
30 | eqeq1 | |
|
31 | 30 | anbi1d | |
32 | fveq1 | |
|
33 | 32 | eqeq2d | |
34 | eleq1 | |
|
35 | 33 34 | anbi12d | |
36 | 31 35 | opelopabg | |
37 | 29 23 36 | syl2anc | |
38 | 26 23 37 | mpbir2and | |
39 | eqid | |
|
40 | 16 17 2 39 7 | dihvalcqat | |
41 | 10 18 40 | syl2anc2 | |
42 | 16 17 2 3 4 5 39 | dicval | |
43 | 10 18 42 | syl2anc2 | |
44 | 41 43 | eqtr2d | |
45 | 38 44 | eleqtrd | |
46 | 11 | simprd | |
47 | 1 2 4 8 12 6 | dvh0g | |
48 | 10 47 | syl | |
49 | 48 | eqeq2d | |
50 | 27 28 | ax-mp | |
51 | 4 | fvexi | |
52 | 51 | mptex | |
53 | 6 52 | eqeltri | |
54 | 50 53 | opth2 | |
55 | 54 | simprbi | |
56 | 49 55 | syl6bi | |
57 | 56 | necon3d | |
58 | 46 57 | mpd | |
59 | 12 9 13 14 15 45 58 | lsatel | |