Metamath Proof Explorer


Theorem dihpN

Description: The value of isomorphism H at the fiducial atom P is determined by the vector <. 0 , S >. (the zero translation ltrnid and a nonzero member of the endomorphism ring). In particular, S can be replaced with the ring unity ` ( _I |`T ) . (Contributed by NM, 26-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihp.b B=BaseK
dihp.h H=LHypK
dihp.p P=ocKW
dihp.t T=LTrnKW
dihp.e E=TEndoKW
dihp.o O=fTIB
dihp.i I=DIsoHKW
dihp.u U=DVecHKW
dihp.n N=LSpanU
dihp.k φKHLWH
dihp.s φSESO
Assertion dihpN φIP=NIBS

Proof

Step Hyp Ref Expression
1 dihp.b B=BaseK
2 dihp.h H=LHypK
3 dihp.p P=ocKW
4 dihp.t T=LTrnKW
5 dihp.e E=TEndoKW
6 dihp.o O=fTIB
7 dihp.i I=DIsoHKW
8 dihp.u U=DVecHKW
9 dihp.n N=LSpanU
10 dihp.k φKHLWH
11 dihp.s φSESO
12 eqid 0U=0U
13 eqid LSAtomsU=LSAtomsU
14 2 8 10 dvhlvec φULVec
15 2 3 7 8 13 10 dihat φIPLSAtomsU
16 eqid K=K
17 eqid AtomsK=AtomsK
18 16 17 2 3 lhpocnel2 KHLWHPAtomsK¬PKW
19 eqid ιfT|fP=P=ιfT|fP=P
20 1 16 17 2 4 19 ltrniotaidvalN KHLWHPAtomsK¬PKWιfT|fP=P=IB
21 10 18 20 syl2anc2 φιfT|fP=P=IB
22 21 fveq2d φSιfT|fP=P=SIB
23 11 simpld φSE
24 1 2 5 tendoid KHLWHSESIB=IB
25 10 23 24 syl2anc φSIB=IB
26 22 25 eqtr2d φIB=SιfT|fP=P
27 1 fvexi BV
28 resiexg BVIBV
29 27 28 mp1i φIBV
30 eqeq1 g=IBg=sιfT|fP=PIB=sιfT|fP=P
31 30 anbi1d g=IBg=sιfT|fP=PsEIB=sιfT|fP=PsE
32 fveq1 s=SsιfT|fP=P=SιfT|fP=P
33 32 eqeq2d s=SIB=sιfT|fP=PIB=SιfT|fP=P
34 eleq1 s=SsESE
35 33 34 anbi12d s=SIB=sιfT|fP=PsEIB=SιfT|fP=PSE
36 31 35 opelopabg IBVSEIBSgs|g=sιfT|fP=PsEIB=SιfT|fP=PSE
37 29 23 36 syl2anc φIBSgs|g=sιfT|fP=PsEIB=SιfT|fP=PSE
38 26 23 37 mpbir2and φIBSgs|g=sιfT|fP=PsE
39 eqid DIsoCKW=DIsoCKW
40 16 17 2 39 7 dihvalcqat KHLWHPAtomsK¬PKWIP=DIsoCKWP
41 10 18 40 syl2anc2 φIP=DIsoCKWP
42 16 17 2 3 4 5 39 dicval KHLWHPAtomsK¬PKWDIsoCKWP=gs|g=sιfT|fP=PsE
43 10 18 42 syl2anc2 φDIsoCKWP=gs|g=sιfT|fP=PsE
44 41 43 eqtr2d φgs|g=sιfT|fP=PsE=IP
45 38 44 eleqtrd φIBSIP
46 11 simprd φSO
47 1 2 4 8 12 6 dvh0g KHLWH0U=IBO
48 10 47 syl φ0U=IBO
49 48 eqeq2d φIBS=0UIBS=IBO
50 27 28 ax-mp IBV
51 4 fvexi TV
52 51 mptex fTIBV
53 6 52 eqeltri OV
54 50 53 opth2 IBS=IBOIB=IBS=O
55 54 simprbi IBS=IBOS=O
56 49 55 syl6bi φIBS=0US=O
57 56 necon3d φSOIBS0U
58 46 57 mpd φIBS0U
59 12 9 13 14 15 45 58 lsatel φIP=NIBS