Metamath Proof Explorer


Theorem dmdbr5ati

Description: Dual modular pair property in terms of atoms. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 AC
sumdmdi.2 BC
Assertion dmdbr5ati A𝑀*BxHAtomsxABxxBAB

Proof

Step Hyp Ref Expression
1 sumdmdi.1 AC
2 sumdmdi.2 BC
3 dmdi4 ACBCxCA𝑀*BxBABxBAB
4 1 2 3 mp3an12 xCA𝑀*BxBABxBAB
5 atelch xHAtomsxC
6 4 5 syl11 A𝑀*BxHAtomsxBABxBAB
7 6 a1dd A𝑀*BxHAtomsxABxBABxBAB
8 7 ralrimiv A𝑀*BxHAtomsxABxBABxBAB
9 chjcom BCxCBx=xB
10 2 5 9 sylancr xHAtomsBx=xB
11 10 ineq1d xHAtomsBxBA=xBBA
12 1 2 chjcomi AB=BA
13 12 ineq2i xBAB=xBBA
14 11 13 eqtr4di xHAtomsBxBA=xBAB
15 14 adantr xHAtoms¬xABBxBA=xBAB
16 12 sseq2i xABxBA
17 16 notbii ¬xAB¬xBA
18 2 1 atabs2i xHAtoms¬xBABxBA=B
19 18 imp xHAtoms¬xBABxBA=B
20 17 19 sylan2b xHAtoms¬xABBxBA=B
21 15 20 eqtr3d xHAtoms¬xABxBAB=B
22 chjcl xCBCxBC
23 5 2 22 sylancl xHAtomsxBC
24 chincl xBCACxBAC
25 23 1 24 sylancl xHAtomsxBAC
26 chub2 BCxBACBxBAB
27 2 25 26 sylancr xHAtomsBxBAB
28 27 adantr xHAtoms¬xABBxBAB
29 21 28 eqsstrd xHAtoms¬xABxBABxBAB
30 29 ex xHAtoms¬xABxBABxBAB
31 30 biantrud xHAtomsxABxBABxBABxABxBABxBAB¬xABxBABxBAB
32 pm4.83 xABxBABxBAB¬xABxBABxBABxBABxBAB
33 31 32 bitrdi xHAtomsxABxBABxBABxBABxBAB
34 33 ralbiia xHAtomsxABxBABxBABxHAtomsxBABxBAB
35 1 2 sumdmdlem2 xHAtomsxBABxBABA+B=AB
36 34 35 sylbi xHAtomsxABxBABxBABA+B=AB
37 1 2 sumdmdi A+B=ABA𝑀*B
38 36 37 sylib xHAtomsxABxBABxBABA𝑀*B
39 8 38 impbii A𝑀*BxHAtomsxABxBABxBAB
40 2 1 chub2i BAB
41 40 biantru xABxABBAB
42 1 2 chjcli ABC
43 chlub xCBCABCxABBABxBAB
44 2 42 43 mp3an23 xCxABBABxBAB
45 41 44 bitrid xCxABxBAB
46 ssid xBxB
47 46 biantrur xBABxBxBxBAB
48 ssin xBxBxBABxBxBAB
49 47 48 bitri xBABxBxBAB
50 45 49 bitrdi xCxABxBxBAB
51 50 biimpa xCxABxBxBAB
52 inss1 xBABxB
53 51 52 jctil xCxABxBABxBxBxBAB
54 eqss xBAB=xBxBABxBxBxBAB
55 53 54 sylibr xCxABxBAB=xB
56 55 sseq1d xCxABxBABxBABxBxBAB
57 2 22 mpan2 xCxBC
58 57 1 24 sylancl xCxBAC
59 2 58 26 sylancr xCBxBAB
60 59 biantrud xCxxBABxxBABBxBAB
61 chjcl xBACBCxBABC
62 58 2 61 sylancl xCxBABC
63 chlub xCBCxBABCxxBABBxBABxBxBAB
64 2 63 mp3an2 xCxBABCxxBABBxBABxBxBAB
65 62 64 mpdan xCxxBABBxBABxBxBAB
66 60 65 bitrd xCxxBABxBxBAB
67 66 adantr xCxABxxBABxBxBAB
68 56 67 bitr4d xCxABxBABxBABxxBAB
69 68 pm5.74da xCxABxBABxBABxABxxBAB
70 5 69 syl xHAtomsxABxBABxBABxABxxBAB
71 70 ralbiia xHAtomsxABxBABxBABxHAtomsxABxxBAB
72 39 71 bitri A𝑀*BxHAtomsxABxxBAB