Metamath Proof Explorer


Theorem doca2N

Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses doca2.h H=LHypK
doca2.i I=DIsoAKW
doca2.n ˙=ocAKW
Assertion doca2N KHLWHXdomI˙˙IX=IX

Proof

Step Hyp Ref Expression
1 doca2.h H=LHypK
2 doca2.i I=DIsoAKW
3 doca2.n ˙=ocAKW
4 hlol KHLKOL
5 4 ad2antrr KHLWHXdomIKOL
6 eqid BaseK=BaseK
7 6 1 2 diadmclN KHLWHXdomIXBaseK
8 6 1 lhpbase WHWBaseK
9 8 ad2antlr KHLWHXdomIWBaseK
10 eqid joinK=joinK
11 eqid meetK=meetK
12 eqid ocK=ocK
13 6 10 11 12 oldmm1 KOLXBaseKWBaseKocKXmeetKW=ocKXjoinKocKW
14 5 7 9 13 syl3anc KHLWHXdomIocKXmeetKW=ocKXjoinKocKW
15 14 oveq1d KHLWHXdomIocKXmeetKWmeetKW=ocKXjoinKocKWmeetKW
16 15 eqcomd KHLWHXdomIocKXjoinKocKWmeetKW=ocKXmeetKWmeetKW
17 16 fveq2d KHLWHXdomIocKocKXjoinKocKWmeetKW=ocKocKXmeetKWmeetKW
18 hllat KHLKLat
19 18 ad2antrr KHLWHXdomIKLat
20 6 11 latmcl KLatXBaseKWBaseKXmeetKWBaseK
21 19 7 9 20 syl3anc KHLWHXdomIXmeetKWBaseK
22 6 10 11 12 oldmm2 KOLXmeetKWBaseKWBaseKocKocKXmeetKWmeetKW=XmeetKWjoinKocKW
23 5 21 9 22 syl3anc KHLWHXdomIocKocKXmeetKWmeetKW=XmeetKWjoinKocKW
24 17 23 eqtrd KHLWHXdomIocKocKXjoinKocKWmeetKW=XmeetKWjoinKocKW
25 24 oveq1d KHLWHXdomIocKocKXjoinKocKWmeetKWjoinKocKW=XmeetKWjoinKocKWjoinKocKW
26 hlop KHLKOP
27 26 ad2antrr KHLWHXdomIKOP
28 6 12 opoccl KOPWBaseKocKWBaseK
29 27 9 28 syl2anc KHLWHXdomIocKWBaseK
30 6 10 latjass KLatXmeetKWBaseKocKWBaseKocKWBaseKXmeetKWjoinKocKWjoinKocKW=XmeetKWjoinKocKWjoinKocKW
31 19 21 29 29 30 syl13anc KHLWHXdomIXmeetKWjoinKocKWjoinKocKW=XmeetKWjoinKocKWjoinKocKW
32 6 10 latjidm KLatocKWBaseKocKWjoinKocKW=ocKW
33 19 29 32 syl2anc KHLWHXdomIocKWjoinKocKW=ocKW
34 33 oveq2d KHLWHXdomIXmeetKWjoinKocKWjoinKocKW=XmeetKWjoinKocKW
35 31 34 eqtrd KHLWHXdomIXmeetKWjoinKocKWjoinKocKW=XmeetKWjoinKocKW
36 25 35 eqtrd KHLWHXdomIocKocKXjoinKocKWmeetKWjoinKocKW=XmeetKWjoinKocKW
37 36 oveq1d KHLWHXdomIocKocKXjoinKocKWmeetKWjoinKocKWmeetKW=XmeetKWjoinKocKWmeetKW
38 hloml KHLKOML
39 38 ad2antrr KHLWHXdomIKOML
40 eqid K=K
41 6 40 11 latmle2 KLatXBaseKWBaseKXmeetKWKW
42 19 7 9 41 syl3anc KHLWHXdomIXmeetKWKW
43 6 40 10 11 12 omlspjN KOMLXmeetKWBaseKWBaseKXmeetKWKWXmeetKWjoinKocKWmeetKW=XmeetKW
44 39 21 9 42 43 syl121anc KHLWHXdomIXmeetKWjoinKocKWmeetKW=XmeetKW
45 40 1 2 diadmleN KHLWHXdomIXKW
46 6 40 11 latleeqm1 KLatXBaseKWBaseKXKWXmeetKW=X
47 19 7 9 46 syl3anc KHLWHXdomIXKWXmeetKW=X
48 45 47 mpbid KHLWHXdomIXmeetKW=X
49 37 44 48 3eqtrrd KHLWHXdomIX=ocKocKXjoinKocKWmeetKWjoinKocKWmeetKW
50 49 fveq2d KHLWHXdomIIX=IocKocKXjoinKocKWmeetKWjoinKocKWmeetKW
51 6 12 opoccl KOPXBaseKocKXBaseK
52 27 7 51 syl2anc KHLWHXdomIocKXBaseK
53 6 10 latjcl KLatocKXBaseKocKWBaseKocKXjoinKocKWBaseK
54 19 52 29 53 syl3anc KHLWHXdomIocKXjoinKocKWBaseK
55 6 11 latmcl KLatocKXjoinKocKWBaseKWBaseKocKXjoinKocKWmeetKWBaseK
56 19 54 9 55 syl3anc KHLWHXdomIocKXjoinKocKWmeetKWBaseK
57 6 40 11 latmle2 KLatocKXjoinKocKWBaseKWBaseKocKXjoinKocKWmeetKWKW
58 19 54 9 57 syl3anc KHLWHXdomIocKXjoinKocKWmeetKWKW
59 6 40 1 2 diaeldm KHLWHocKXjoinKocKWmeetKWdomIocKXjoinKocKWmeetKWBaseKocKXjoinKocKWmeetKWKW
60 59 adantr KHLWHXdomIocKXjoinKocKWmeetKWdomIocKXjoinKocKWmeetKWBaseKocKXjoinKocKWmeetKWKW
61 56 58 60 mpbir2and KHLWHXdomIocKXjoinKocKWmeetKWdomI
62 eqid LTrnKW=LTrnKW
63 10 11 12 1 62 2 3 diaocN KHLWHocKXjoinKocKWmeetKWdomIIocKocKXjoinKocKWmeetKWjoinKocKWmeetKW=˙IocKXjoinKocKWmeetKW
64 61 63 syldan KHLWHXdomIIocKocKXjoinKocKWmeetKWjoinKocKWmeetKW=˙IocKXjoinKocKWmeetKW
65 10 11 12 1 62 2 3 diaocN KHLWHXdomIIocKXjoinKocKWmeetKW=˙IX
66 65 fveq2d KHLWHXdomI˙IocKXjoinKocKWmeetKW=˙˙IX
67 50 64 66 3eqtrrd KHLWHXdomI˙˙IX=IX