Metamath Proof Explorer


Theorem dquart

Description: Solve a depressed quartic equation. To eliminate S , which is the square root of a solution M to the resolvent cubic equation, apply cubic or one of its variants. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses dquart.b φB
dquart.c φC
dquart.x φX
dquart.s φS
dquart.m φM=2S2
dquart.m0 φM0
dquart.i φI
dquart.i2 φI2=S2-B2+C4S
dquart.d φD
dquart.3 φM3+2BM2+B24D M+C2=0
dquart.j φJ
dquart.j2 φJ2=S2-B2-C4S
Assertion dquart φX4+BX2+CX+D=0X=-S+IX=-S-IX=S+JX=SJ

Proof

Step Hyp Ref Expression
1 dquart.b φB
2 dquart.c φC
3 dquart.x φX
4 dquart.s φS
5 dquart.m φM=2S2
6 dquart.m0 φM0
7 dquart.i φI
8 dquart.i2 φI2=S2-B2+C4S
9 dquart.d φD
10 dquart.3 φM3+2BM2+B24D M+C2=0
11 dquart.j φJ
12 dquart.j2 φJ2=S2-B2-C4S
13 3 sqcld φX2
14 2cn 2
15 mulcl 2S2S
16 14 4 15 sylancr φ2S
17 16 sqcld φ2S2
18 5 17 eqeltrd φM
19 18 1 addcld φM+B
20 19 halfcld φM+B2
21 binom2 X2M+B2X2+M+B22=X22+2X2M+B2+M+B22
22 13 20 21 syl2anc φX2+M+B22=X22+2X2M+B2+M+B22
23 2nn0 20
24 23 a1i φ20
25 3 24 24 expmuld φX22=X22
26 2t2e4 22=4
27 26 oveq2i X22=X4
28 25 27 eqtr3di φX22=X4
29 14 a1i φ2
30 29 13 20 mul12d φ2X2M+B2=X22M+B2
31 2ne0 20
32 31 a1i φ20
33 19 29 32 divcan2d φ2M+B2=M+B
34 33 oveq2d φX22M+B2=X2M+B
35 13 19 mulcomd φX2M+B=M+BX2
36 34 35 eqtrd φX22M+B2=M+BX2
37 18 1 13 adddird φM+BX2=MX2+BX2
38 30 36 37 3eqtrd φ2X2M+B2=MX2+BX2
39 28 38 oveq12d φX22+2X2M+B2=X4+MX2+BX2
40 4nn0 40
41 expcl X40X4
42 3 40 41 sylancl φX4
43 18 13 mulcld φMX2
44 1 13 mulcld φBX2
45 42 43 44 add12d φX4+MX2+BX2=MX2+X4+BX2
46 39 45 eqtrd φX22+2X2M+B2=MX2+X4+BX2
47 46 oveq1d φX22+2X2M+B2+M+B22=MX2+X4+BX2+M+B22
48 42 44 addcld φX4+BX2
49 20 sqcld φM+B22
50 43 48 49 addassd φMX2+X4+BX2+M+B22=MX2+X4+BX2+M+B22
51 22 47 50 3eqtrd φX2+M+B22=MX2+X4+BX2+M+B22
52 18 halfcld φM2
53 52 3 mulcld φM2X
54 4cn 4
55 54 a1i φ4
56 4ne0 40
57 56 a1i φ40
58 2 55 57 divcld φC4
59 53 58 subcld φM2XC4
60 5 6 eqnetrrd φ2S20
61 sqne0 2S2S202S0
62 16 61 syl φ2S202S0
63 60 62 mpbid φ2S0
64 mulne0b 2S20S02S0
65 14 4 64 sylancr φ20S02S0
66 63 65 mpbird φ20S0
67 66 simprd φS0
68 59 4 29 67 32 divcan5d φ2M2XC42S=M2XC4S
69 29 53 58 subdid φ2M2XC4=2M2X2C4
70 29 52 3 mulassd φ2M2X=2M2X
71 18 29 32 divcan2d φ2M2=M
72 71 oveq1d φ2M2X=MX
73 70 72 eqtr3d φ2M2X=MX
74 29 2 55 57 divassd φ2C4=2C4
75 26 oveq2i 2C22=2C4
76 2 29 29 32 32 divcan5d φ2C22=C2
77 75 76 eqtr3id φ2C4=C2
78 74 77 eqtr3d φ2C4=C2
79 73 78 oveq12d φ2M2X2C4=MXC2
80 69 79 eqtrd φ2M2XC4=MXC2
81 80 oveq1d φ2M2XC42S=MXC22S
82 68 81 eqtr3d φM2XC4S=MXC22S
83 82 oveq1d φM2XC4S2=MXC22S2
84 18 3 mulcld φMX
85 2 halfcld φC2
86 84 85 subcld φMXC2
87 86 16 63 sqdivd φMXC22S2=MXC222S2
88 18 sqcld φM2
89 88 13 mulcld φM2X2
90 84 2 mulcld φMXC
91 89 90 subcld φM2X2MXC
92 2 sqcld φC2
93 92 55 57 divcld φC24
94 91 93 18 6 divdird φM2X2-MXC+C24M=M2X2MXCM+C24M
95 binom2sub MXC2MXC22=MX2-2MXC2+C22
96 84 85 95 syl2anc φMXC22=MX2-2MXC2+C22
97 18 3 sqmuld φMX2=M2X2
98 29 84 85 mul12d φ2MXC2=MX2C2
99 2 29 32 divcan2d φ2C2=C
100 99 oveq2d φMX2C2=MXC
101 98 100 eqtrd φ2MXC2=MXC
102 97 101 oveq12d φMX22MXC2=M2X2MXC
103 2 29 32 sqdivd φC22=C222
104 sq2 22=4
105 104 oveq2i C222=C24
106 103 105 eqtrdi φC22=C24
107 102 106 oveq12d φMX2-2MXC2+C22=M2X2-MXC+C24
108 96 107 eqtr2d φM2X2-MXC+C24=MXC22
109 108 5 oveq12d φM2X2-MXC+C24M=MXC222S2
110 89 90 18 6 divsubdird φM2X2MXCM=M2X2MMXCM
111 88 13 18 6 div23d φM2X2M=M2MX2
112 18 sqvald φM2= M M
113 112 oveq1d φM2M= M MM
114 18 18 6 divcan3d φ M MM=M
115 113 114 eqtrd φM2M=M
116 115 oveq1d φM2MX2=MX2
117 111 116 eqtrd φM2X2M=MX2
118 18 3 2 mul32d φMXC=MCX
119 18 2 3 mulassd φMCX=MCX
120 118 119 eqtrd φMXC=MCX
121 120 oveq1d φMXCM=MCXM
122 2 3 mulcld φCX
123 122 18 6 divcan3d φMCXM=CX
124 121 123 eqtrd φMXCM=CX
125 117 124 oveq12d φM2X2MMXCM=MX2CX
126 110 125 eqtrd φM2X2MXCM=MX2CX
127 126 oveq1d φM2X2MXCM+C24M=MX2-CX+C24M
128 93 18 6 divcld φC24M
129 43 122 128 subsubd φMX2CXC24M=MX2-CX+C24M
130 127 129 eqtr4d φM2X2MXCM+C24M=MX2CXC24M
131 94 109 130 3eqtr3d φMXC222S2=MX2CXC24M
132 83 87 131 3eqtrd φM2XC4S2=MX2CXC24M
133 51 132 oveq12d φX2+M+B22M2XC4S2=MX2+X4+BX2+M+B22-MX2CXC24M
134 48 49 addcld φX4+BX2+M+B22
135 122 128 subcld φCXC24M
136 43 134 135 pnncand φMX2+X4+BX2+M+B22-MX2CXC24M=X4+BX2+M+B22+CXC24M
137 128 negcld φC24M
138 48 49 122 137 add4d φX4+BX2+M+B22+CX+C24M=X4+BX2+CX+M+B22+C24M
139 122 128 negsubd φCX+C24M=CXC24M
140 139 oveq2d φX4+BX2+M+B22+CX+C24M=X4+BX2+M+B22+CXC24M
141 49 128 negsubd φM+B22+C24M=M+B22C24M
142 1 2 3 4 5 6 7 8 9 10 dquartlem2 φM+B22C24M=D
143 141 142 eqtrd φM+B22+C24M=D
144 143 oveq2d φX4+BX2+CX+M+B22+C24M=X4+BX2+CX+D
145 48 122 9 addassd φX4+BX2+CX+D=X4+BX2+CX+D
146 144 145 eqtrd φX4+BX2+CX+M+B22+C24M=X4+BX2+CX+D
147 138 140 146 3eqtr3d φX4+BX2+M+B22+CXC24M=X4+BX2+CX+D
148 133 136 147 3eqtrd φX2+M+B22M2XC4S2=X4+BX2+CX+D
149 13 20 addcld φX2+M+B2
150 59 4 67 divcld φM2XC4S
151 subsq X2+M+B2M2XC4SX2+M+B22M2XC4S2=X2+M+B2+M2XC4SX2+M+B2-M2XC4S
152 149 150 151 syl2anc φX2+M+B22M2XC4S2=X2+M+B2+M2XC4SX2+M+B2-M2XC4S
153 148 152 eqtr3d φX4+BX2+CX+D=X2+M+B2+M2XC4SX2+M+B2-M2XC4S
154 153 eqeq1d φX4+BX2+CX+D=0X2+M+B2+M2XC4SX2+M+B2-M2XC4S=0
155 149 150 addcld φX2+M+B2+M2XC4S
156 149 150 subcld φX2+M+B2-M2XC4S
157 155 156 mul0ord φX2+M+B2+M2XC4SX2+M+B2-M2XC4S=0X2+M+B2+M2XC4S=0X2+M+B2-M2XC4S=0
158 1 2 3 4 5 6 7 8 dquartlem1 φX2+M+B2+M2XC4S=0X=-S+IX=-S-I
159 4 negcld φS
160 sqneg 2S2S2=2S2
161 16 160 syl φ2S2=2S2
162 5 161 eqtr4d φM=2S2
163 mulneg2 2S2S=2S
164 14 4 163 sylancr φ2S=2S
165 164 oveq1d φ2S2=2S2
166 162 165 eqtr4d φM=2S2
167 4 sqcld φS2
168 167 negcld φS2
169 1 halfcld φB2
170 168 169 subcld φ-S2-B2
171 58 4 67 divcld φC4S
172 170 171 negsubd φS2-B2+C4S=S2-B2-C4S
173 sqneg SS2=S2
174 4 173 syl φS2=S2
175 174 eqcomd φS2=S2
176 175 negeqd φS2=S2
177 176 oveq1d φ-S2-B2=-S2-B2
178 58 4 67 divneg2d φC4S=C4S
179 177 178 oveq12d φS2-B2+C4S=S2-B2+C4S
180 12 172 179 3eqtr2d φJ2=S2-B2+C4S
181 1 2 3 159 166 6 11 180 dquartlem1 φX2+M+B2+M2XC4S=0X=-S+JX=-S-J
182 59 4 67 divneg2d φM2XC4S=M2XC4S
183 182 oveq2d φX2+M+B2+M2XC4S=X2+M+B2+M2XC4S
184 149 150 negsubd φX2+M+B2+M2XC4S=X2+M+B2-M2XC4S
185 183 184 eqtr3d φX2+M+B2+M2XC4S=X2+M+B2-M2XC4S
186 185 eqeq1d φX2+M+B2+M2XC4S=0X2+M+B2-M2XC4S=0
187 4 negnegd φS=S
188 187 oveq1d φ-S+J=S+J
189 188 eqeq2d φX=-S+JX=S+J
190 187 oveq1d φ-S-J=SJ
191 190 eqeq2d φX=-S-JX=SJ
192 189 191 orbi12d φX=-S+JX=-S-JX=S+JX=SJ
193 181 186 192 3bitr3d φX2+M+B2-M2XC4S=0X=S+JX=SJ
194 158 193 orbi12d φX2+M+B2+M2XC4S=0X2+M+B2-M2XC4S=0X=-S+IX=-S-IX=S+JX=SJ
195 154 157 194 3bitrd φX4+BX2+CX+D=0X=-S+IX=-S-IX=S+JX=SJ