| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvfsum.s |  | 
						
							| 2 |  | dvfsum.z |  | 
						
							| 3 |  | dvfsum.m |  | 
						
							| 4 |  | dvfsum.d |  | 
						
							| 5 |  | dvfsum.md |  | 
						
							| 6 |  | dvfsum.t |  | 
						
							| 7 |  | dvfsum.a |  | 
						
							| 8 |  | dvfsum.b1 |  | 
						
							| 9 |  | dvfsum.b2 |  | 
						
							| 10 |  | dvfsum.b3 |  | 
						
							| 11 |  | dvfsum.c |  | 
						
							| 12 |  | dvfsumrlim.l |  | 
						
							| 13 |  | dvfsumrlim.g |  | 
						
							| 14 |  | dvfsumrlim.k |  | 
						
							| 15 |  | dvfsumrlim2.1 |  | 
						
							| 16 |  | dvfsumrlim2.2 |  | 
						
							| 17 |  | ioossre |  | 
						
							| 18 | 1 17 | eqsstri |  | 
						
							| 19 | 18 15 | sselid |  | 
						
							| 20 | 19 | rexrd |  | 
						
							| 21 | 19 | renepnfd |  | 
						
							| 22 |  | icopnfsup |  | 
						
							| 23 | 20 21 22 | syl2anc |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 1 2 3 4 5 6 7 8 9 10 11 13 | dvfsumrlimf |  | 
						
							| 26 | 25 | ad2antrr |  | 
						
							| 27 | 15 | ad2antrr |  | 
						
							| 28 | 26 27 | ffvelcdmd |  | 
						
							| 29 | 28 | recnd |  | 
						
							| 30 | 6 | rexrd |  | 
						
							| 31 | 15 1 | eleqtrdi |  | 
						
							| 32 |  | elioopnf |  | 
						
							| 33 | 30 32 | syl |  | 
						
							| 34 | 31 33 | mpbid |  | 
						
							| 35 | 34 | simprd |  | 
						
							| 36 |  | df-ioo |  | 
						
							| 37 |  | df-ico |  | 
						
							| 38 |  | xrltletr |  | 
						
							| 39 | 36 37 38 | ixxss1 |  | 
						
							| 40 | 30 35 39 | syl2anc |  | 
						
							| 41 | 40 1 | sseqtrrdi |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 | 42 | sselda |  | 
						
							| 44 | 26 43 | ffvelcdmd |  | 
						
							| 45 | 44 | recnd |  | 
						
							| 46 | 29 45 | subcld |  | 
						
							| 47 |  | pnfxr |  | 
						
							| 48 |  | icossre |  | 
						
							| 49 | 19 47 48 | sylancl |  | 
						
							| 50 | 49 | adantr |  | 
						
							| 51 |  | rlimf |  | 
						
							| 52 | 51 | adantl |  | 
						
							| 53 |  | ovex |  | 
						
							| 54 | 53 13 | dmmpti |  | 
						
							| 55 | 54 | feq2i |  | 
						
							| 56 | 52 55 | sylib |  | 
						
							| 57 | 15 | adantr |  | 
						
							| 58 | 56 57 | ffvelcdmd |  | 
						
							| 59 |  | rlimconst |  | 
						
							| 60 | 50 58 59 | syl2anc |  | 
						
							| 61 | 56 | feqmptd |  | 
						
							| 62 |  | simpr |  | 
						
							| 63 | 61 62 | eqbrtrrd |  | 
						
							| 64 | 42 63 | rlimres2 |  | 
						
							| 65 | 29 45 60 64 | rlimsub |  | 
						
							| 66 | 46 65 | rlimabs |  | 
						
							| 67 | 18 | a1i |  | 
						
							| 68 | 67 7 8 10 | dvmptrecl |  | 
						
							| 69 | 68 | ralrimiva |  | 
						
							| 70 |  | nfcsb1v |  | 
						
							| 71 | 70 | nfel1 |  | 
						
							| 72 |  | csbeq1a |  | 
						
							| 73 | 72 | eleq1d |  | 
						
							| 74 | 71 73 | rspc |  | 
						
							| 75 | 15 69 74 | sylc |  | 
						
							| 76 | 75 | recnd |  | 
						
							| 77 |  | rlimconst |  | 
						
							| 78 | 49 76 77 | syl2anc |  | 
						
							| 79 | 78 | adantr |  | 
						
							| 80 | 46 | abscld |  | 
						
							| 81 | 75 | ad2antrr |  | 
						
							| 82 | 29 45 | abssubd |  | 
						
							| 83 | 3 | adantr |  | 
						
							| 84 | 4 | adantr |  | 
						
							| 85 | 5 | adantr |  | 
						
							| 86 | 6 | adantr |  | 
						
							| 87 | 7 | adantlr |  | 
						
							| 88 | 8 | adantlr |  | 
						
							| 89 | 9 | adantlr |  | 
						
							| 90 | 10 | adantr |  | 
						
							| 91 | 47 | a1i |  | 
						
							| 92 |  | 3simpa |  | 
						
							| 93 | 92 12 | syl3an3 |  | 
						
							| 94 | 93 | 3adant1r |  | 
						
							| 95 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | dvfsumrlimge0 |  | 
						
							| 96 | 95 | 3adantr3 |  | 
						
							| 97 | 96 | adantlr |  | 
						
							| 98 | 15 | adantr |  | 
						
							| 99 | 41 | sselda |  | 
						
							| 100 | 16 | adantr |  | 
						
							| 101 |  | elicopnf |  | 
						
							| 102 | 19 101 | syl |  | 
						
							| 103 | 102 | simplbda |  | 
						
							| 104 | 102 | simprbda |  | 
						
							| 105 | 104 | rexrd |  | 
						
							| 106 |  | pnfge |  | 
						
							| 107 | 105 106 | syl |  | 
						
							| 108 | 1 2 83 84 85 86 87 88 89 90 11 91 94 13 97 98 99 100 103 107 | dvfsumlem4 |  | 
						
							| 109 | 108 | adantlr |  | 
						
							| 110 | 82 109 | eqbrtrd |  | 
						
							| 111 | 24 66 79 80 81 110 | rlimle |  |