Metamath Proof Explorer


Theorem dvradcnv2

Description: The radius of convergence of the (formal) derivative H of the power series G is (at least) as large as the radius of convergence of G . This version of dvradcnv uses a shifted version of H to match the sum form of ( CC _D F ) in pserdv2 (and shows how to use uzmptshftfval to shift a maps-to function on a set of upper integers). (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses dvradcnv2.g G = x n 0 A n x n
dvradcnv2.r R = sup r | seq 0 + G r dom * <
dvradcnv2.h H = n n A n X n 1
dvradcnv2.a φ A : 0
dvradcnv2.x φ X
dvradcnv2.l φ X < R
Assertion dvradcnv2 φ seq 1 + H dom

Proof

Step Hyp Ref Expression
1 dvradcnv2.g G = x n 0 A n x n
2 dvradcnv2.r R = sup r | seq 0 + G r dom * <
3 dvradcnv2.h H = n n A n X n 1
4 dvradcnv2.a φ A : 0
5 dvradcnv2.x φ X
6 dvradcnv2.l φ X < R
7 0cn 0
8 ax-1cn 1
9 7 8 subnegi 0 -1 = 0 + 1
10 0p1e1 0 + 1 = 1
11 9 10 eqtri 0 -1 = 1
12 seqeq1 0 -1 = 1 seq 0 -1 + H = seq 1 + H
13 11 12 ax-mp seq 0 -1 + H = seq 1 + H
14 ovex n A n X n 1 V
15 id n = m -1 n = m -1
16 fveq2 n = m -1 A n = A m -1
17 15 16 oveq12d n = m -1 n A n = m -1 A m -1
18 oveq1 n = m -1 n 1 = m - -1 - 1
19 18 oveq2d n = m -1 X n 1 = X m - -1 - 1
20 17 19 oveq12d n = m -1 n A n X n 1 = m -1 A m -1 X m - -1 - 1
21 nnuz = 1
22 nn0uz 0 = 0
23 1pneg1e0 1 + -1 = 0
24 23 fveq2i 1 + -1 = 0
25 22 24 eqtr4i 0 = 1 + -1
26 1zzd φ 1
27 26 znegcld φ 1
28 3 14 20 21 25 26 27 uzmptshftfval φ H shift -1 = m 0 m -1 A m -1 X m - -1 - 1
29 nn0cn m 0 m
30 29 adantl φ m 0 m
31 1cnd φ m 0 1
32 30 31 subnegd φ m 0 m -1 = m + 1
33 32 fveq2d φ m 0 A m -1 = A m + 1
34 32 33 oveq12d φ m 0 m -1 A m -1 = m + 1 A m + 1
35 32 oveq1d φ m 0 m - -1 - 1 = m + 1 - 1
36 30 31 pncand φ m 0 m + 1 - 1 = m
37 35 36 eqtrd φ m 0 m - -1 - 1 = m
38 37 oveq2d φ m 0 X m - -1 - 1 = X m
39 34 38 oveq12d φ m 0 m -1 A m -1 X m - -1 - 1 = m + 1 A m + 1 X m
40 39 mpteq2dva φ m 0 m -1 A m -1 X m - -1 - 1 = m 0 m + 1 A m + 1 X m
41 28 40 eqtrd φ H shift -1 = m 0 m + 1 A m + 1 X m
42 41 seqeq3d φ seq 0 + H shift -1 = seq 0 + m 0 m + 1 A m + 1 X m
43 fveq2 n = m A n = A m
44 oveq2 n = m x n = x m
45 43 44 oveq12d n = m A n x n = A m x m
46 45 cbvmptv n 0 A n x n = m 0 A m x m
47 46 mpteq2i x n 0 A n x n = x m 0 A m x m
48 1 47 eqtri G = x m 0 A m x m
49 eqid m 0 m + 1 A m + 1 X m = m 0 m + 1 A m + 1 X m
50 48 2 49 4 5 6 dvradcnv φ seq 0 + m 0 m + 1 A m + 1 X m dom
51 42 50 eqeltrd φ seq 0 + H shift -1 dom
52 climdm seq 0 + H shift -1 dom seq 0 + H shift -1 seq 0 + H shift -1
53 51 52 sylib φ seq 0 + H shift -1 seq 0 + H shift -1
54 0z 0
55 neg1z 1
56 nnex V
57 56 mptex n n A n X n 1 V
58 3 57 eqeltri H V
59 58 seqshft 0 1 seq 0 + H shift -1 = seq 0 -1 + H shift -1
60 54 55 59 mp2an seq 0 + H shift -1 = seq 0 -1 + H shift -1
61 60 breq1i seq 0 + H shift -1 seq 0 + H shift -1 seq 0 -1 + H shift -1 seq 0 + H shift -1
62 seqex seq 0 -1 + H V
63 climshft 1 seq 0 -1 + H V seq 0 -1 + H shift -1 seq 0 + H shift -1 seq 0 -1 + H seq 0 + H shift -1
64 55 62 63 mp2an seq 0 -1 + H shift -1 seq 0 + H shift -1 seq 0 -1 + H seq 0 + H shift -1
65 61 64 bitri seq 0 + H shift -1 seq 0 + H shift -1 seq 0 -1 + H seq 0 + H shift -1
66 fvex seq 0 + H shift -1 V
67 62 66 breldm seq 0 -1 + H seq 0 + H shift -1 seq 0 -1 + H dom
68 65 67 sylbi seq 0 + H shift -1 seq 0 + H shift -1 seq 0 -1 + H dom
69 53 68 syl φ seq 0 -1 + H dom
70 13 69 eqeltrrid φ seq 1 + H dom