Description: The radius of convergence of the (formal) derivative H of the power series G is (at least) as large as the radius of convergence of G . This version of dvradcnv uses a shifted version of H to match the sum form of ( CC _D F ) in pserdv2 (and shows how to use uzmptshftfval to shift a maps-to function on a set of upper integers). (Contributed by Steve Rodriguez, 22-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvradcnv2.g | |
|
dvradcnv2.r | |
||
dvradcnv2.h | |
||
dvradcnv2.a | |
||
dvradcnv2.x | |
||
dvradcnv2.l | |
||
Assertion | dvradcnv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvradcnv2.g | |
|
2 | dvradcnv2.r | |
|
3 | dvradcnv2.h | |
|
4 | dvradcnv2.a | |
|
5 | dvradcnv2.x | |
|
6 | dvradcnv2.l | |
|
7 | 0cn | |
|
8 | ax-1cn | |
|
9 | 7 8 | subnegi | |
10 | 0p1e1 | |
|
11 | 9 10 | eqtri | |
12 | seqeq1 | |
|
13 | 11 12 | ax-mp | |
14 | ovex | |
|
15 | id | |
|
16 | fveq2 | |
|
17 | 15 16 | oveq12d | |
18 | oveq1 | |
|
19 | 18 | oveq2d | |
20 | 17 19 | oveq12d | |
21 | nnuz | |
|
22 | nn0uz | |
|
23 | 1pneg1e0 | |
|
24 | 23 | fveq2i | |
25 | 22 24 | eqtr4i | |
26 | 1zzd | |
|
27 | 26 | znegcld | |
28 | 3 14 20 21 25 26 27 | uzmptshftfval | |
29 | nn0cn | |
|
30 | 29 | adantl | |
31 | 1cnd | |
|
32 | 30 31 | subnegd | |
33 | 32 | fveq2d | |
34 | 32 33 | oveq12d | |
35 | 32 | oveq1d | |
36 | 30 31 | pncand | |
37 | 35 36 | eqtrd | |
38 | 37 | oveq2d | |
39 | 34 38 | oveq12d | |
40 | 39 | mpteq2dva | |
41 | 28 40 | eqtrd | |
42 | 41 | seqeq3d | |
43 | fveq2 | |
|
44 | oveq2 | |
|
45 | 43 44 | oveq12d | |
46 | 45 | cbvmptv | |
47 | 46 | mpteq2i | |
48 | 1 47 | eqtri | |
49 | eqid | |
|
50 | 48 2 49 4 5 6 | dvradcnv | |
51 | 42 50 | eqeltrd | |
52 | climdm | |
|
53 | 51 52 | sylib | |
54 | 0z | |
|
55 | neg1z | |
|
56 | nnex | |
|
57 | 56 | mptex | |
58 | 3 57 | eqeltri | |
59 | 58 | seqshft | |
60 | 54 55 59 | mp2an | |
61 | 60 | breq1i | |
62 | seqex | |
|
63 | climshft | |
|
64 | 55 62 63 | mp2an | |
65 | 61 64 | bitri | |
66 | fvex | |
|
67 | 62 66 | breldm | |
68 | 65 67 | sylbi | |
69 | 53 68 | syl | |
70 | 13 69 | eqeltrrid | |