Description: A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019) (Revised by AV, 27-Apr-2019) (Proof shortened by AV, 30-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | el0ldep | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqeq1 | |
|
6 | 5 | ifbid | |
7 | 6 | cbvmptv | |
8 | 1 2 3 4 7 | mptcfsupp | |
9 | 8 | 3adant1r | |
10 | simp1l | |
|
11 | simp2 | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | 1 2 3 4 12 13 | linc0scn0 | |
15 | 10 11 14 | syl2anc | |
16 | simp3 | |
|
17 | fveq2 | |
|
18 | 17 | neeq1d | |
19 | 18 | adantl | |
20 | iftrue | |
|
21 | fvexd | |
|
22 | 13 20 16 21 | fvmptd3 | |
23 | 2 | lmodring | |
24 | 23 | anim1i | |
25 | 24 | 3ad2ant1 | |
26 | eqid | |
|
27 | 26 4 3 | ring1ne0 | |
28 | 25 27 | syl | |
29 | 22 28 | eqnetrd | |
30 | 16 19 29 | rspcedvd | |
31 | 2 26 4 | lmod1cl | |
32 | 2 26 3 | lmod0cl | |
33 | 31 32 | ifcld | |
34 | 33 | adantr | |
35 | 34 | 3ad2ant1 | |
36 | 35 | adantr | |
37 | 36 | fmpttd | |
38 | fvexd | |
|
39 | 38 11 | elmapd | |
40 | 37 39 | mpbird | |
41 | breq1 | |
|
42 | oveq1 | |
|
43 | 42 | eqeq1d | |
44 | fveq1 | |
|
45 | 44 | neeq1d | |
46 | 45 | rexbidv | |
47 | 41 43 46 | 3anbi123d | |
48 | 47 | adantl | |
49 | 40 48 | rspcedv | |
50 | 9 15 30 49 | mp3and | |
51 | 1 12 2 26 3 | islindeps | |
52 | 10 11 51 | syl2anc | |
53 | 50 52 | mpbird | |