Metamath Proof Explorer


Theorem el0ldep

Description: A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019) (Revised by AV, 27-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion el0ldep MLMod1<BaseScalarMS𝒫BaseM0MSSlinDepSM

Proof

Step Hyp Ref Expression
1 eqid BaseM=BaseM
2 eqid ScalarM=ScalarM
3 eqid 0ScalarM=0ScalarM
4 eqid 1ScalarM=1ScalarM
5 eqeq1 s=ys=0My=0M
6 5 ifbid s=yifs=0M1ScalarM0ScalarM=ify=0M1ScalarM0ScalarM
7 6 cbvmptv sSifs=0M1ScalarM0ScalarM=ySify=0M1ScalarM0ScalarM
8 1 2 3 4 7 mptcfsupp MLModS𝒫BaseM0MSfinSupp0ScalarMsSifs=0M1ScalarM0ScalarM
9 8 3adant1r MLMod1<BaseScalarMS𝒫BaseM0MSfinSupp0ScalarMsSifs=0M1ScalarM0ScalarM
10 simp1l MLMod1<BaseScalarMS𝒫BaseM0MSMLMod
11 simp2 MLMod1<BaseScalarMS𝒫BaseM0MSS𝒫BaseM
12 eqid 0M=0M
13 eqid sSifs=0M1ScalarM0ScalarM=sSifs=0M1ScalarM0ScalarM
14 1 2 3 4 12 13 linc0scn0 MLModS𝒫BaseMsSifs=0M1ScalarM0ScalarMlinCMS=0M
15 10 11 14 syl2anc MLMod1<BaseScalarMS𝒫BaseM0MSsSifs=0M1ScalarM0ScalarMlinCMS=0M
16 simp3 MLMod1<BaseScalarMS𝒫BaseM0MS0MS
17 fveq2 x=0MsSifs=0M1ScalarM0ScalarMx=sSifs=0M1ScalarM0ScalarM0M
18 17 neeq1d x=0MsSifs=0M1ScalarM0ScalarMx0ScalarMsSifs=0M1ScalarM0ScalarM0M0ScalarM
19 18 adantl MLMod1<BaseScalarMS𝒫BaseM0MSx=0MsSifs=0M1ScalarM0ScalarMx0ScalarMsSifs=0M1ScalarM0ScalarM0M0ScalarM
20 iftrue s=0Mifs=0M1ScalarM0ScalarM=1ScalarM
21 fvexd MLMod1<BaseScalarMS𝒫BaseM0MS1ScalarMV
22 13 20 16 21 fvmptd3 MLMod1<BaseScalarMS𝒫BaseM0MSsSifs=0M1ScalarM0ScalarM0M=1ScalarM
23 2 lmodring MLModScalarMRing
24 23 anim1i MLMod1<BaseScalarMScalarMRing1<BaseScalarM
25 24 3ad2ant1 MLMod1<BaseScalarMS𝒫BaseM0MSScalarMRing1<BaseScalarM
26 eqid BaseScalarM=BaseScalarM
27 26 4 3 ring1ne0 ScalarMRing1<BaseScalarM1ScalarM0ScalarM
28 25 27 syl MLMod1<BaseScalarMS𝒫BaseM0MS1ScalarM0ScalarM
29 22 28 eqnetrd MLMod1<BaseScalarMS𝒫BaseM0MSsSifs=0M1ScalarM0ScalarM0M0ScalarM
30 16 19 29 rspcedvd MLMod1<BaseScalarMS𝒫BaseM0MSxSsSifs=0M1ScalarM0ScalarMx0ScalarM
31 2 26 4 lmod1cl MLMod1ScalarMBaseScalarM
32 2 26 3 lmod0cl MLMod0ScalarMBaseScalarM
33 31 32 ifcld MLModifs=0M1ScalarM0ScalarMBaseScalarM
34 33 adantr MLMod1<BaseScalarMifs=0M1ScalarM0ScalarMBaseScalarM
35 34 3ad2ant1 MLMod1<BaseScalarMS𝒫BaseM0MSifs=0M1ScalarM0ScalarMBaseScalarM
36 35 adantr MLMod1<BaseScalarMS𝒫BaseM0MSsSifs=0M1ScalarM0ScalarMBaseScalarM
37 36 fmpttd MLMod1<BaseScalarMS𝒫BaseM0MSsSifs=0M1ScalarM0ScalarM:SBaseScalarM
38 fvexd MLMod1<BaseScalarMS𝒫BaseM0MSBaseScalarMV
39 38 11 elmapd MLMod1<BaseScalarMS𝒫BaseM0MSsSifs=0M1ScalarM0ScalarMBaseScalarMSsSifs=0M1ScalarM0ScalarM:SBaseScalarM
40 37 39 mpbird MLMod1<BaseScalarMS𝒫BaseM0MSsSifs=0M1ScalarM0ScalarMBaseScalarMS
41 breq1 f=sSifs=0M1ScalarM0ScalarMfinSupp0ScalarMffinSupp0ScalarMsSifs=0M1ScalarM0ScalarM
42 oveq1 f=sSifs=0M1ScalarM0ScalarMflinCMS=sSifs=0M1ScalarM0ScalarMlinCMS
43 42 eqeq1d f=sSifs=0M1ScalarM0ScalarMflinCMS=0MsSifs=0M1ScalarM0ScalarMlinCMS=0M
44 fveq1 f=sSifs=0M1ScalarM0ScalarMfx=sSifs=0M1ScalarM0ScalarMx
45 44 neeq1d f=sSifs=0M1ScalarM0ScalarMfx0ScalarMsSifs=0M1ScalarM0ScalarMx0ScalarM
46 45 rexbidv f=sSifs=0M1ScalarM0ScalarMxSfx0ScalarMxSsSifs=0M1ScalarM0ScalarMx0ScalarM
47 41 43 46 3anbi123d f=sSifs=0M1ScalarM0ScalarMfinSupp0ScalarMfflinCMS=0MxSfx0ScalarMfinSupp0ScalarMsSifs=0M1ScalarM0ScalarMsSifs=0M1ScalarM0ScalarMlinCMS=0MxSsSifs=0M1ScalarM0ScalarMx0ScalarM
48 47 adantl MLMod1<BaseScalarMS𝒫BaseM0MSf=sSifs=0M1ScalarM0ScalarMfinSupp0ScalarMfflinCMS=0MxSfx0ScalarMfinSupp0ScalarMsSifs=0M1ScalarM0ScalarMsSifs=0M1ScalarM0ScalarMlinCMS=0MxSsSifs=0M1ScalarM0ScalarMx0ScalarM
49 40 48 rspcedv MLMod1<BaseScalarMS𝒫BaseM0MSfinSupp0ScalarMsSifs=0M1ScalarM0ScalarMsSifs=0M1ScalarM0ScalarMlinCMS=0MxSsSifs=0M1ScalarM0ScalarMx0ScalarMfBaseScalarMSfinSupp0ScalarMfflinCMS=0MxSfx0ScalarM
50 9 15 30 49 mp3and MLMod1<BaseScalarMS𝒫BaseM0MSfBaseScalarMSfinSupp0ScalarMfflinCMS=0MxSfx0ScalarM
51 1 12 2 26 3 islindeps MLModS𝒫BaseMSlinDepSMfBaseScalarMSfinSupp0ScalarMfflinCMS=0MxSfx0ScalarM
52 10 11 51 syl2anc MLMod1<BaseScalarMS𝒫BaseM0MSSlinDepSMfBaseScalarMSfinSupp0ScalarMfflinCMS=0MxSfx0ScalarM
53 50 52 mpbird MLMod1<BaseScalarMS𝒫BaseM0MSSlinDepSM