Metamath Proof Explorer


Theorem etransclem27

Description: The N -th derivative of F applied to J is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem27.s φS
etransclem27.x φXTopOpenfld𝑡S
etransclem27.p φP
etransclem27.h H=j0MxXxjifj=0P1P
etransclem27.cfi φCFin
etransclem27.cf φC:domC00M
etransclem27.g G=xXldomCj=0MSDnHjCljx
etransclem27.jx φJX
etransclem27.jz φJ
Assertion etransclem27 φGJ

Proof

Step Hyp Ref Expression
1 etransclem27.s φS
2 etransclem27.x φXTopOpenfld𝑡S
3 etransclem27.p φP
4 etransclem27.h H=j0MxXxjifj=0P1P
5 etransclem27.cfi φCFin
6 etransclem27.cf φC:domC00M
7 etransclem27.g G=xXldomCj=0MSDnHjCljx
8 etransclem27.jx φJX
9 etransclem27.jz φJ
10 fveq2 x=JSDnHjCljx=SDnHjCljJ
11 10 prodeq2ad x=Jj=0MSDnHjCljx=j=0MSDnHjCljJ
12 11 sumeq2sdv x=JldomCj=0MSDnHjCljx=ldomCj=0MSDnHjCljJ
13 dmfi CFindomCFin
14 5 13 syl φdomCFin
15 fzfid φldomC0MFin
16 1 ad2antrr φldomCj0MS
17 2 ad2antrr φldomCj0MXTopOpenfld𝑡S
18 3 ad2antrr φldomCj0MP
19 etransclem5 j0MxXxjifj=0P1P=z0MyXyzifz=0P1P
20 4 19 eqtri H=z0MyXyzifz=0P1P
21 simpr φldomCj0Mj0M
22 6 ffvelcdmda φldomCCl00M
23 elmapi Cl00MCl:0M0
24 22 23 syl φldomCCl:0M0
25 24 ffvelcdmda φldomCj0MClj0
26 16 17 18 20 21 25 etransclem20 φldomCj0MSDnHjClj:X
27 8 ad2antrr φldomCj0MJX
28 26 27 ffvelcdmd φldomCj0MSDnHjCljJ
29 15 28 fprodcl φldomCj=0MSDnHjCljJ
30 14 29 fsumcl φldomCj=0MSDnHjCljJ
31 7 12 8 30 fvmptd3 φGJ=ldomCj=0MSDnHjCljJ
32 16 17 18 20 21 25 27 etransclem21 φldomCj0MSDnHjCljJ=ififj=0P1P<Clj0ifj=0P1P!ifj=0P1PClj!Jjifj=0P1PClj
33 iftrue ifj=0P1P<Cljififj=0P1P<Clj0ifj=0P1P!ifj=0P1PClj!Jjifj=0P1PClj=0
34 0zd ifj=0P1P<Clj0
35 33 34 eqeltrd ifj=0P1P<Cljififj=0P1P<Clj0ifj=0P1P!ifj=0P1PClj!Jjifj=0P1PClj
36 35 adantl φldomCj0Mifj=0P1P<Cljififj=0P1P<Clj0ifj=0P1P!ifj=0P1PClj!Jjifj=0P1PClj
37 0zd φldomCj0M¬ifj=0P1P<Clj0
38 nnm1nn0 PP10
39 3 38 syl φP10
40 3 nnnn0d φP0
41 39 40 ifcld φifj=0P1P0
42 41 nn0zd φifj=0P1P
43 42 ad3antrrr φldomCj0M¬ifj=0P1P<Cljifj=0P1P
44 25 nn0zd φldomCj0MClj
45 44 adantr φldomCj0M¬ifj=0P1P<CljClj
46 43 45 zsubcld φldomCj0M¬ifj=0P1P<Cljifj=0P1PClj
47 45 zred φldomCj0M¬ifj=0P1P<CljClj
48 43 zred φldomCj0M¬ifj=0P1P<Cljifj=0P1P
49 simpr φldomCj0M¬ifj=0P1P<Clj¬ifj=0P1P<Clj
50 47 48 49 nltled φldomCj0M¬ifj=0P1P<CljCljifj=0P1P
51 48 47 subge0d φldomCj0M¬ifj=0P1P<Clj0ifj=0P1PCljCljifj=0P1P
52 50 51 mpbird φldomCj0M¬ifj=0P1P<Clj0ifj=0P1PClj
53 0red φldomCj0M0
54 25 nn0red φldomCj0MClj
55 41 nn0red φifj=0P1P
56 55 ad2antrr φldomCj0Mifj=0P1P
57 25 nn0ge0d φldomCj0M0Clj
58 53 54 56 57 lesub2dd φldomCj0Mifj=0P1PCljifj=0P1P0
59 56 recnd φldomCj0Mifj=0P1P
60 59 subid1d φldomCj0Mifj=0P1P0=ifj=0P1P
61 58 60 breqtrd φldomCj0Mifj=0P1PCljifj=0P1P
62 61 adantr φldomCj0M¬ifj=0P1P<Cljifj=0P1PCljifj=0P1P
63 37 43 46 52 62 elfzd φldomCj0M¬ifj=0P1P<Cljifj=0P1PClj0ifj=0P1P
64 permnn ifj=0P1PClj0ifj=0P1Pifj=0P1P!ifj=0P1PClj!
65 63 64 syl φldomCj0M¬ifj=0P1P<Cljifj=0P1P!ifj=0P1PClj!
66 65 nnzd φldomCj0M¬ifj=0P1P<Cljifj=0P1P!ifj=0P1PClj!
67 9 ad3antrrr φldomCj0M¬ifj=0P1P<CljJ
68 elfzelz j0Mj
69 68 ad2antlr φldomCj0M¬ifj=0P1P<Cljj
70 67 69 zsubcld φldomCj0M¬ifj=0P1P<CljJj
71 elnn0z ifj=0P1PClj0ifj=0P1PClj0ifj=0P1PClj
72 46 52 71 sylanbrc φldomCj0M¬ifj=0P1P<Cljifj=0P1PClj0
73 zexpcl Jjifj=0P1PClj0Jjifj=0P1PClj
74 70 72 73 syl2anc φldomCj0M¬ifj=0P1P<CljJjifj=0P1PClj
75 66 74 zmulcld φldomCj0M¬ifj=0P1P<Cljifj=0P1P!ifj=0P1PClj!Jjifj=0P1PClj
76 37 75 ifcld φldomCj0M¬ifj=0P1P<Cljififj=0P1P<Clj0ifj=0P1P!ifj=0P1PClj!Jjifj=0P1PClj
77 36 76 pm2.61dan φldomCj0Mififj=0P1P<Clj0ifj=0P1P!ifj=0P1PClj!Jjifj=0P1PClj
78 32 77 eqeltrd φldomCj0MSDnHjCljJ
79 15 78 fprodzcl φldomCj=0MSDnHjCljJ
80 14 79 fsumzcl φldomCj=0MSDnHjCljJ
81 31 80 eqeltrd φGJ