Metamath Proof Explorer


Theorem etransclem41

Description: P does not divide the P-1 -th derivative of F applied to 0 . This is the first part of case 2: proven in in Juillerat p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem41.m φM0
etransclem41.p φP
etransclem41.mp φM!<P
etransclem41.f F=xxP1j=1MxjP
Assertion etransclem41 φ¬PDnFP10P1!

Proof

Step Hyp Ref Expression
1 etransclem41.m φM0
2 etransclem41.p φP
3 etransclem41.mp φM!<P
4 etransclem41.f F=xxP1j=1MxjP
5 1 faccld φM!
6 5 nnred φM!
7 prmnn PP
8 2 7 syl φP
9 8 nnred φP
10 6 9 ltnled φM!<P¬PM!
11 3 10 mpbid φ¬PM!
12 8 nnzd φP
13 12 5 jca φPM!
14 13 adantr φPM!PM!
15 simpr φPM!PM!
16 dvdsle PM!PM!PM!
17 14 15 16 sylc φPM!PM!
18 11 17 mtand φ¬PM!
19 fzfid 1MFin
20 elfzelz j1Mj
21 20 znegcld j1Mj
22 21 zcnd j1Mj
23 22 adantl j1Mj
24 19 23 fprodabs2 j=1Mj=j=1Mj
25 24 mptru j=1Mj=j=1Mj
26 20 zcnd j1Mj
27 26 absnegd j1Mj=j
28 20 zred j1Mj
29 0red j1M0
30 1red j1M1
31 0lt1 0<1
32 31 a1i j1M0<1
33 elfzle1 j1M1j
34 29 30 28 32 33 ltletrd j1M0<j
35 29 28 34 ltled j1M0j
36 28 35 absidd j1Mj=j
37 27 36 eqtrd j1Mj=j
38 37 prodeq2i j=1Mj=j=1Mj
39 25 38 eqtri j=1Mj=j=1Mj
40 fprodfac M0M!=j=1Mj
41 1 40 syl φM!=j=1Mj
42 39 41 eqtr4id φj=1Mj=M!
43 42 breq2d φPj=1MjPM!
44 18 43 mtbird φ¬Pj=1Mj
45 fzfid φ1MFin
46 21 adantl φj1Mj
47 45 46 fprodzcl φj=1Mj
48 dvdsabsb Pj=1MjPj=1MjPj=1Mj
49 12 47 48 syl2anc φPj=1MjPj=1Mj
50 44 49 mtbird φ¬Pj=1Mj
51 prmdvdsexp Pj=1MjPPj=1MjPPj=1Mj
52 2 47 8 51 syl3anc φPj=1MjPPj=1Mj
53 50 52 mtbird φ¬Pj=1MjP
54 etransclem11 m0d0m0M|k=0Mdk=m=n0c0n0M|j=0Mcj=n
55 eqeq1 k=jk=0j=0
56 55 ifbid k=jifk=0P10=ifj=0P10
57 56 cbvmptv k0Mifk=0P10=j0Mifj=0P10
58 8 1 4 54 57 etransclem35 φDnFP10=P1!j=1MjP
59 58 oveq1d φDnFP10P1!=P1!j=1MjPP1!
60 22 adantl φj1Mj
61 45 60 fprodcl φj=1Mj
62 8 nnnn0d φP0
63 61 62 expcld φj=1MjP
64 nnm1nn0 PP10
65 8 64 syl φP10
66 65 faccld φP1!
67 66 nncnd φP1!
68 66 nnne0d φP1!0
69 63 67 68 divcan3d φP1!j=1MjPP1!=j=1MjP
70 59 69 eqtrd φDnFP10P1!=j=1MjP
71 70 breq2d φPDnFP10P1!Pj=1MjP
72 53 71 mtbird φ¬PDnFP10P1!