| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  | 
						
							| 2 | 1 | lindff |  | 
						
							| 3 | 2 | ancoms |  | 
						
							| 4 | 3 | 3adant3 |  | 
						
							| 5 |  | f1f |  | 
						
							| 6 | 5 | 3ad2ant3 |  | 
						
							| 7 |  | fco |  | 
						
							| 8 | 4 6 7 | syl2anc |  | 
						
							| 9 | 8 | ffdmd |  | 
						
							| 10 |  | simpl2 |  | 
						
							| 11 | 6 | adantr |  | 
						
							| 12 | 8 | fdmd |  | 
						
							| 13 | 12 | eleq2d |  | 
						
							| 14 | 13 | biimpa |  | 
						
							| 15 | 11 14 | ffvelcdmd |  | 
						
							| 16 | 15 | adantrr |  | 
						
							| 17 |  | eldifi |  | 
						
							| 18 | 17 | ad2antll |  | 
						
							| 19 |  | eldifsni |  | 
						
							| 20 | 19 | ad2antll |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 21 22 23 24 25 | lindfind |  | 
						
							| 27 | 10 16 18 20 26 | syl22anc |  | 
						
							| 28 |  | f1fn |  | 
						
							| 29 | 28 | 3ad2ant3 |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | fvco2 |  | 
						
							| 32 | 30 14 31 | syl2anc |  | 
						
							| 33 | 32 | oveq2d |  | 
						
							| 34 | 33 | eleq1d |  | 
						
							| 35 |  | simpl1 |  | 
						
							| 36 |  | imassrn |  | 
						
							| 37 | 4 | frnd |  | 
						
							| 38 | 36 37 | sstrid |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 |  | imaco |  | 
						
							| 41 | 12 | difeq1d |  | 
						
							| 42 | 41 | imaeq2d |  | 
						
							| 43 |  | df-f1 |  | 
						
							| 44 | 43 | simprbi |  | 
						
							| 45 | 44 | 3ad2ant3 |  | 
						
							| 46 |  | imadif |  | 
						
							| 47 | 45 46 | syl |  | 
						
							| 48 | 42 47 | eqtrd |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 |  | fnsnfv |  | 
						
							| 51 | 29 50 | sylan |  | 
						
							| 52 | 51 | difeq2d |  | 
						
							| 53 |  | imassrn |  | 
						
							| 54 | 6 | adantr |  | 
						
							| 55 | 54 | frnd |  | 
						
							| 56 | 53 55 | sstrid |  | 
						
							| 57 | 56 | ssdifd |  | 
						
							| 58 | 52 57 | eqsstrrd |  | 
						
							| 59 | 49 58 | eqsstrd |  | 
						
							| 60 |  | imass2 |  | 
						
							| 61 | 59 60 | syl |  | 
						
							| 62 | 40 61 | eqsstrid |  | 
						
							| 63 | 1 22 | lspss |  | 
						
							| 64 | 35 39 62 63 | syl3anc |  | 
						
							| 65 | 14 64 | syldan |  | 
						
							| 66 | 65 | sseld |  | 
						
							| 67 | 34 66 | sylbid |  | 
						
							| 68 | 67 | adantrr |  | 
						
							| 69 | 27 68 | mtod |  | 
						
							| 70 | 69 | ralrimivva |  | 
						
							| 71 |  | simp1 |  | 
						
							| 72 |  | rellindf |  | 
						
							| 73 | 72 | brrelex1i |  | 
						
							| 74 | 73 | 3ad2ant2 |  | 
						
							| 75 |  | simp3 |  | 
						
							| 76 | 74 | dmexd |  | 
						
							| 77 |  | f1dmex |  | 
						
							| 78 | 75 76 77 | syl2anc |  | 
						
							| 79 | 6 78 | fexd |  | 
						
							| 80 |  | coexg |  | 
						
							| 81 | 74 79 80 | syl2anc |  | 
						
							| 82 | 1 21 22 23 25 24 | islindf |  | 
						
							| 83 | 71 81 82 | syl2anc |  | 
						
							| 84 | 9 70 83 | mpbir2and |  |