| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fltltc.a |
|
| 2 |
|
fltltc.b |
|
| 3 |
|
fltltc.c |
|
| 4 |
|
fltltc.n |
|
| 5 |
|
fltltc.1 |
|
| 6 |
|
fltnlta.1 |
|
| 7 |
|
eluzge3nn |
|
| 8 |
4 7
|
syl |
|
| 9 |
8
|
nnred |
|
| 10 |
3
|
nnred |
|
| 11 |
2
|
nnred |
|
| 12 |
10 11
|
resubcld |
|
| 13 |
|
uzuzle23 |
|
| 14 |
|
uz2m1nn |
|
| 15 |
4 13 14
|
3syl |
|
| 16 |
15
|
nnnn0d |
|
| 17 |
10 16
|
reexpcld |
|
| 18 |
15
|
nnred |
|
| 19 |
11 16
|
reexpcld |
|
| 20 |
18 19
|
remulcld |
|
| 21 |
17 20
|
readdcld |
|
| 22 |
12 21
|
remulcld |
|
| 23 |
1
|
nnrpd |
|
| 24 |
15
|
nnzd |
|
| 25 |
23 24
|
rpexpcld |
|
| 26 |
22 25
|
rerpdivcld |
|
| 27 |
1
|
nnred |
|
| 28 |
19 20
|
readdcld |
|
| 29 |
12 28
|
remulcld |
|
| 30 |
29 25
|
rerpdivcld |
|
| 31 |
12 9
|
remulcld |
|
| 32 |
|
1cnd |
|
| 33 |
15
|
nncnd |
|
| 34 |
19
|
recnd |
|
| 35 |
32 33 34
|
adddird |
|
| 36 |
8
|
nncnd |
|
| 37 |
32 36
|
pncan3d |
|
| 38 |
37
|
oveq1d |
|
| 39 |
34
|
mullidd |
|
| 40 |
39
|
oveq1d |
|
| 41 |
35 38 40
|
3eqtr3rd |
|
| 42 |
41
|
oveq2d |
|
| 43 |
42
|
oveq1d |
|
| 44 |
43 30
|
eqeltrrd |
|
| 45 |
8
|
nnnn0d |
|
| 46 |
45
|
nn0ge0d |
|
| 47 |
|
1red |
|
| 48 |
1 2 3 4 5
|
fltltc |
|
| 49 |
|
nnltp1le |
|
| 50 |
2 3 49
|
syl2anc |
|
| 51 |
48 50
|
mpbid |
|
| 52 |
11
|
leidd |
|
| 53 |
10 11 47 11 51 52
|
lesub3d |
|
| 54 |
9 12 46 53
|
lemulge12d |
|
| 55 |
12
|
recnd |
|
| 56 |
25
|
rpred |
|
| 57 |
56
|
recnd |
|
| 58 |
55 36 57
|
mulassd |
|
| 59 |
58
|
oveq1d |
|
| 60 |
55 36
|
mulcld |
|
| 61 |
1
|
nncnd |
|
| 62 |
1
|
nnne0d |
|
| 63 |
61 62 24
|
expne0d |
|
| 64 |
60 57 63
|
divcan4d |
|
| 65 |
59 64
|
eqtr3d |
|
| 66 |
9 56
|
remulcld |
|
| 67 |
12 66
|
remulcld |
|
| 68 |
42 29
|
eqeltrrd |
|
| 69 |
41 28
|
eqeltrrd |
|
| 70 |
|
difrp |
|
| 71 |
11 10 70
|
syl2anc |
|
| 72 |
48 71
|
mpbid |
|
| 73 |
8
|
nnrpd |
|
| 74 |
2
|
nnrpd |
|
| 75 |
23 74 15 6
|
ltexp1dd |
|
| 76 |
56 19 73 75
|
ltmul2dd |
|
| 77 |
66 69 72 76
|
ltmul2dd |
|
| 78 |
67 68 25 77
|
ltdiv1dd |
|
| 79 |
65 78
|
eqbrtrrd |
|
| 80 |
9 31 44 54 79
|
lelttrd |
|
| 81 |
80 43
|
breqtrrd |
|
| 82 |
3
|
nnrpd |
|
| 83 |
74 82 15 48
|
ltexp1dd |
|
| 84 |
19 17 20 83
|
ltadd1dd |
|
| 85 |
28 21 72 84
|
ltmul2dd |
|
| 86 |
29 22 25 85
|
ltdiv1dd |
|
| 87 |
9 30 26 81 86
|
lttrd |
|
| 88 |
27 45
|
reexpcld |
|
| 89 |
1 2 3 4 5
|
fltnltalem |
|
| 90 |
22 88 25 89
|
ltdiv1dd |
|
| 91 |
36 32
|
nncand |
|
| 92 |
91
|
oveq2d |
|
| 93 |
8
|
nnzd |
|
| 94 |
61 62 24 93
|
expsubd |
|
| 95 |
61
|
exp1d |
|
| 96 |
92 94 95
|
3eqtr3d |
|
| 97 |
90 96
|
breqtrd |
|
| 98 |
9 26 27 87 97
|
lttrd |
|