Metamath Proof Explorer


Theorem fmtnoprmfac1lem

Description: Lemma for fmtnoprmfac1 : The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021) (Proof shortened by AV, 18-Mar-2022)

Ref Expression
Assertion fmtnoprmfac1lem NP2PFermatNoNodP2=2N+1

Proof

Step Hyp Ref Expression
1 eldifi P2P
2 prmnn PP
3 1 2 syl P2P
4 3 ad2antlr NP2PFermatNoNP
5 nnnn0 NN0
6 fmtno N0FermatNoN=22N+1
7 5 6 syl NFermatNoN=22N+1
8 7 breq2d NPFermatNoNP22N+1
9 8 adantr NP2PFermatNoNP22N+1
10 9 biimpa NP2PFermatNoNP22N+1
11 dvdsmod0 PP22N+122N+1modP=0
12 4 10 11 syl2anc NP2PFermatNoN22N+1modP=0
13 12 ex NP2PFermatNoN22N+1modP=0
14 2nn 2
15 14 a1i N2
16 2nn0 20
17 16 a1i N20
18 17 5 nn0expcld N2N0
19 15 18 nnexpcld N22N
20 19 nnzd N22N
21 20 adantr NP222N
22 1zzd NP21
23 3 adantl NP2P
24 summodnegmod 22N1P22N+1modP=022NmodP=-1modP
25 21 22 23 24 syl3anc NP222N+1modP=022NmodP=-1modP
26 neg1z 1
27 21 26 jctir NP222N1
28 27 adantr NP222NmodP=-1modP22N1
29 2 nnrpd PP+
30 1 29 syl P2P+
31 17 30 anim12i NP220P+
32 31 adantr NP222NmodP=-1modP20P+
33 simpr NP222NmodP=-1modP22NmodP=-1modP
34 modexp 22N120P+22NmodP=-1modP22N2modP=12modP
35 28 32 33 34 syl3anc NP222NmodP=-1modP22N2modP=12modP
36 35 ex NP222NmodP=-1modP22N2modP=12modP
37 2cnd N2
38 37 18 17 3jca N22N020
39 38 adantr NP222N020
40 expmul 22N02022N2=22N2
41 39 40 syl NP222N2=22N2
42 2cnd NP22
43 5 adantr NP2N0
44 42 43 expp1d NP22N+1=2N2
45 44 eqcomd NP22N2=2N+1
46 45 oveq2d NP222N2=22N+1
47 41 46 eqtr3d NP222N2=22N+1
48 47 oveq1d NP222N2modP=22N+1modP
49 neg1sqe1 12=1
50 49 a1i NP212=1
51 50 oveq1d NP212modP=1modP
52 3 nnred P2P
53 prmgt1 P1<P
54 1 53 syl P21<P
55 1mod P1<P1modP=1
56 52 54 55 syl2anc P21modP=1
57 56 adantl NP21modP=1
58 51 57 eqtrd NP212modP=1
59 48 58 eqeq12d NP222N2modP=12modP22N+1modP=1
60 simpll NP222N+1modP=122N+1modP=0NP2
61 20 adantr NP22N
62 1zzd NP1
63 2 adantl NPP
64 61 62 63 3jca NP22N1P
65 1 64 sylan2 NP222N1P
66 65 adantr NP222N+1modP=122N1P
67 66 24 syl NP222N+1modP=122N+1modP=022NmodP=-1modP
68 m1modnnsub1 P-1modP=P1
69 23 68 syl NP2-1modP=P1
70 eldifsni P2P2
71 70 adantl NP2P2
72 71 necomd NP22P
73 3 nncnd P2P
74 73 adantl NP2P
75 1cnd NP21
76 74 75 75 subadd2d NP2P1=11+1=P
77 1p1e2 1+1=2
78 77 eqeq1i 1+1=P2=P
79 76 78 bitrdi NP2P1=12=P
80 79 necon3bid NP2P112P
81 72 80 mpbird NP2P11
82 69 81 eqnetrd NP2-1modP1
83 82 adantr NP222N+1modP=1-1modP1
84 83 adantr NP222N+1modP=122NmodP=-1modP-1modP1
85 eqeq1 22NmodP=-1modP22NmodP=1-1modP=1
86 85 adantl NP222N+1modP=122NmodP=-1modP22NmodP=1-1modP=1
87 86 necon3bid NP222N+1modP=122NmodP=-1modP22NmodP1-1modP1
88 84 87 mpbird NP222N+1modP=122NmodP=-1modP22NmodP1
89 88 ex NP222N+1modP=122NmodP=-1modP22NmodP1
90 67 89 sylbid NP222N+1modP=122N+1modP=022NmodP1
91 90 imp NP222N+1modP=122N+1modP=022NmodP1
92 simplr NP222N+1modP=122N+1modP=022N+1modP=1
93 odz2prm2pw NP222NmodP122N+1modP=1odP2=2N+1
94 60 91 92 93 syl12anc NP222N+1modP=122N+1modP=0odP2=2N+1
95 94 ex NP222N+1modP=122N+1modP=0odP2=2N+1
96 95 ex NP222N+1modP=122N+1modP=0odP2=2N+1
97 59 96 sylbid NP222N2modP=12modP22N+1modP=0odP2=2N+1
98 36 97 syld NP222NmodP=-1modP22N+1modP=0odP2=2N+1
99 25 98 sylbid NP222N+1modP=022N+1modP=0odP2=2N+1
100 99 pm2.43d NP222N+1modP=0odP2=2N+1
101 13 100 syld NP2PFermatNoNodP2=2N+1
102 101 3impia NP2PFermatNoNodP2=2N+1