Description: The integral of a piecewise continuous periodic function F is unchanged if the domain is shifted by any positive value X . This lemma generalizes fourierdlem92 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fourierdlem108.a | |
|
fourierdlem108.b | |
||
fourierdlem108.t | |
||
fourierdlem108.x | |
||
fourierdlem108.p | |
||
fourierdlem108.m | |
||
fourierdlem108.q | |
||
fourierdlem108.f | |
||
fourierdlem108.fper | |
||
fourierdlem108.fcn | |
||
fourierdlem108.r | |
||
fourierdlem108.l | |
||
Assertion | fourierdlem108 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem108.a | |
|
2 | fourierdlem108.b | |
|
3 | fourierdlem108.t | |
|
4 | fourierdlem108.x | |
|
5 | fourierdlem108.p | |
|
6 | fourierdlem108.m | |
|
7 | fourierdlem108.q | |
|
8 | fourierdlem108.f | |
|
9 | fourierdlem108.fper | |
|
10 | fourierdlem108.fcn | |
|
11 | fourierdlem108.r | |
|
12 | fourierdlem108.l | |
|
13 | eqid | |
|
14 | oveq1 | |
|
15 | 14 | eleq1d | |
16 | 15 | rexbidv | |
17 | 16 | cbvrabv | |
18 | 17 | uneq2i | |
19 | oveq1 | |
|
20 | 19 | oveq2d | |
21 | 20 | eleq1d | |
22 | 21 | cbvrexvw | |
23 | 22 | rgenw | |
24 | rabbi | |
|
25 | 23 24 | mpbi | |
26 | 25 | uneq2i | |
27 | 26 | fveq2i | |
28 | 27 | oveq1i | |
29 | isoeq5 | |
|
30 | 26 29 | ax-mp | |
31 | isoeq1 | |
|
32 | 30 31 | bitrid | |
33 | 32 | cbviotavw | |
34 | id | |
|
35 | oveq2 | |
|
36 | 35 | oveq1d | |
37 | 36 | fveq2d | |
38 | 37 | oveq1d | |
39 | 34 38 | oveq12d | |
40 | 39 | cbvmptv | |
41 | eqeq1 | |
|
42 | id | |
|
43 | 41 42 | ifbieq2d | |
44 | 43 | cbvmptv | |
45 | fveq2 | |
|
46 | 45 | fveq2d | |
47 | 46 | breq2d | |
48 | 47 | rabbidv | |
49 | fveq2 | |
|
50 | 49 | breq1d | |
51 | 50 | cbvrabv | |
52 | 48 51 | eqtrdi | |
53 | 52 | supeq1d | |
54 | 53 | cbvmptv | |
55 | 1 2 3 4 5 6 7 8 9 10 11 12 13 18 28 33 40 44 54 | fourierdlem107 | |