Metamath Proof Explorer


Theorem fourierdlem108

Description: The integral of a piecewise continuous periodic function F is unchanged if the domain is shifted by any positive value X . This lemma generalizes fourierdlem92 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem108.a φA
fourierdlem108.b φB
fourierdlem108.t T=BA
fourierdlem108.x φX+
fourierdlem108.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem108.m φM
fourierdlem108.q φQPM
fourierdlem108.f φF:
fourierdlem108.fper φxFx+T=Fx
fourierdlem108.fcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem108.r φi0..^MRFQiQi+1limQi
fourierdlem108.l φi0..^MLFQiQi+1limQi+1
Assertion fourierdlem108 φAXBXFxdx=ABFxdx

Proof

Step Hyp Ref Expression
1 fourierdlem108.a φA
2 fourierdlem108.b φB
3 fourierdlem108.t T=BA
4 fourierdlem108.x φX+
5 fourierdlem108.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
6 fourierdlem108.m φM
7 fourierdlem108.q φQPM
8 fourierdlem108.f φF:
9 fourierdlem108.fper φxFx+T=Fx
10 fourierdlem108.fcn φi0..^MFQiQi+1:QiQi+1cn
11 fourierdlem108.r φi0..^MRFQiQi+1limQi
12 fourierdlem108.l φi0..^MLFQiQi+1limQi+1
13 eqid mp0m|p0=AXpm=Ai0..^mpi<pi+1=mp0m|p0=AXpm=Ai0..^mpi<pi+1
14 oveq1 w=yw+kT=y+kT
15 14 eleq1d w=yw+kTranQy+kTranQ
16 15 rexbidv w=ykw+kTranQky+kTranQ
17 16 cbvrabv wAXA|kw+kTranQ=yAXA|ky+kTranQ
18 17 uneq2i AXAwAXA|kw+kTranQ=AXAyAXA|ky+kTranQ
19 oveq1 l=klT=kT
20 19 oveq2d l=kw+lT=w+kT
21 20 eleq1d l=kw+lTranQw+kTranQ
22 21 cbvrexvw lw+lTranQkw+kTranQ
23 22 rgenw wAXAlw+lTranQkw+kTranQ
24 rabbi wAXAlw+lTranQkw+kTranQwAXA|lw+lTranQ=wAXA|kw+kTranQ
25 23 24 mpbi wAXA|lw+lTranQ=wAXA|kw+kTranQ
26 25 uneq2i AXAwAXA|lw+lTranQ=AXAwAXA|kw+kTranQ
27 26 fveq2i AXAwAXA|lw+lTranQ=AXAwAXA|kw+kTranQ
28 27 oveq1i AXAwAXA|lw+lTranQ1=AXAwAXA|kw+kTranQ1
29 isoeq5 AXAwAXA|lw+lTranQ=AXAwAXA|kw+kTranQgIsom<,<0AXAwAXA|lw+lTranQ1AXAwAXA|lw+lTranQgIsom<,<0AXAwAXA|lw+lTranQ1AXAwAXA|kw+kTranQ
30 26 29 ax-mp gIsom<,<0AXAwAXA|lw+lTranQ1AXAwAXA|lw+lTranQgIsom<,<0AXAwAXA|lw+lTranQ1AXAwAXA|kw+kTranQ
31 isoeq1 g=fgIsom<,<0AXAwAXA|lw+lTranQ1AXAwAXA|kw+kTranQfIsom<,<0AXAwAXA|lw+lTranQ1AXAwAXA|kw+kTranQ
32 30 31 bitrid g=fgIsom<,<0AXAwAXA|lw+lTranQ1AXAwAXA|lw+lTranQfIsom<,<0AXAwAXA|lw+lTranQ1AXAwAXA|kw+kTranQ
33 32 cbviotavw ιg|gIsom<,<0AXAwAXA|lw+lTranQ1AXAwAXA|lw+lTranQ=ιf|fIsom<,<0AXAwAXA|lw+lTranQ1AXAwAXA|kw+kTranQ
34 id w=xw=x
35 oveq2 w=xBw=Bx
36 35 oveq1d w=xBwT=BxT
37 36 fveq2d w=xBwT=BxT
38 37 oveq1d w=xBwTT=BxTT
39 34 38 oveq12d w=xw+BwTT=x+BxTT
40 39 cbvmptv ww+BwTT=xx+BxTT
41 eqeq1 w=yw=By=B
42 id w=yw=y
43 41 42 ifbieq2d w=yifw=BAw=ify=BAy
44 43 cbvmptv wABifw=BAw=yABify=BAy
45 fveq2 z=xww+BwTTz=ww+BwTTx
46 45 fveq2d z=xwABifw=BAwww+BwTTz=wABifw=BAwww+BwTTx
47 46 breq2d z=xQjwABifw=BAwww+BwTTzQjwABifw=BAwww+BwTTx
48 47 rabbidv z=xj0..^M|QjwABifw=BAwww+BwTTz=j0..^M|QjwABifw=BAwww+BwTTx
49 fveq2 j=iQj=Qi
50 49 breq1d j=iQjwABifw=BAwww+BwTTxQiwABifw=BAwww+BwTTx
51 50 cbvrabv j0..^M|QjwABifw=BAwww+BwTTx=i0..^M|QiwABifw=BAwww+BwTTx
52 48 51 eqtrdi z=xj0..^M|QjwABifw=BAwww+BwTTz=i0..^M|QiwABifw=BAwww+BwTTx
53 52 supeq1d z=xsupj0..^M|QjwABifw=BAwww+BwTTz<=supi0..^M|QiwABifw=BAwww+BwTTx<
54 53 cbvmptv zsupj0..^M|QjwABifw=BAwww+BwTTz<=xsupi0..^M|QiwABifw=BAwww+BwTTx<
55 1 2 3 4 5 6 7 8 9 10 11 12 13 18 28 33 40 44 54 fourierdlem107 φAXBXFxdx=ABFxdx