Metamath Proof Explorer


Theorem fourierdlem85

Description: Limit of the function G at the lower bounds of the partition intervals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem85.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
fourierdlem85.f φF:
fourierdlem85.x φXranV
fourierdlem85.y φYFX+∞limX
fourierdlem85.w φW
fourierdlem85.h H=sππifs=00FX+sif0<sYWs
fourierdlem85.k K=sππifs=01s2sins2
fourierdlem85.u U=sππHsKs
fourierdlem85.n φN
fourierdlem85.s S=sππsinN+12s
fourierdlem85.g G=sππUsSs
fourierdlem85.m φM
fourierdlem85.v φVPM
fourierdlem85.r φi0..^MRFViVi+1limVi
fourierdlem85.q Q=i0MViX
fourierdlem85.o O=mp0m|p0=πpm=πi0..^mpi<pi+1
fourierdlem85.i I=DF
fourierdlem85.ifn φi0..^MIViVi+1:ViVi+1
fourierdlem85.e φEIX+∞limX
fourierdlem85.a A=ifVi=XERifVi<XWYQiKQiSQi
Assertion fourierdlem85 φi0..^MAGQiQi+1limQi

Proof

Step Hyp Ref Expression
1 fourierdlem85.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
2 fourierdlem85.f φF:
3 fourierdlem85.x φXranV
4 fourierdlem85.y φYFX+∞limX
5 fourierdlem85.w φW
6 fourierdlem85.h H=sππifs=00FX+sif0<sYWs
7 fourierdlem85.k K=sππifs=01s2sins2
8 fourierdlem85.u U=sππHsKs
9 fourierdlem85.n φN
10 fourierdlem85.s S=sππsinN+12s
11 fourierdlem85.g G=sππUsSs
12 fourierdlem85.m φM
13 fourierdlem85.v φVPM
14 fourierdlem85.r φi0..^MRFViVi+1limVi
15 fourierdlem85.q Q=i0MViX
16 fourierdlem85.o O=mp0m|p0=πpm=πi0..^mpi<pi+1
17 fourierdlem85.i I=DF
18 fourierdlem85.ifn φi0..^MIViVi+1:ViVi+1
19 fourierdlem85.e φEIX+∞limX
20 fourierdlem85.a A=ifVi=XERifVi<XWYQiKQiSQi
21 eqid sQiQi+1Us=sQiQi+1Us
22 eqid sQiQi+1Ss=sQiQi+1Ss
23 eqid sQiQi+1UsSs=sQiQi+1UsSs
24 pire π
25 24 renegcli π
26 25 rexri π*
27 26 a1i φi0..^MsQiQi+1π*
28 24 rexri π*
29 28 a1i φi0..^MsQiQi+1π*
30 24 a1i φπ
31 30 renegcld φπ
32 1 fourierdlem2 MVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
33 12 32 syl φVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
34 13 33 mpbid φV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
35 34 simpld φV0M
36 elmapi V0MV:0M
37 frn V:0MranV
38 35 36 37 3syl φranV
39 38 3 sseldd φX
40 31 30 39 1 16 12 13 15 fourierdlem14 φQOM
41 16 12 40 fourierdlem15 φQ:0Mππ
42 41 adantr φi0..^MQ:0Mππ
43 42 adantr φi0..^MsQiQi+1Q:0Mππ
44 simplr φi0..^MsQiQi+1i0..^M
45 27 29 43 44 fourierdlem8 φi0..^MsQiQi+1QiQi+1ππ
46 ioossicc QiQi+1QiQi+1
47 46 sseli sQiQi+1sQiQi+1
48 47 adantl φi0..^MsQiQi+1sQiQi+1
49 45 48 sseldd φi0..^MsQiQi+1sππ
50 ioossre X+∞
51 50 a1i φX+∞
52 2 51 fssresd φFX+∞:X+∞
53 ax-resscn
54 51 53 sstrdi φX+∞
55 eqid TopOpenfld=TopOpenfld
56 pnfxr +∞*
57 56 a1i φ+∞*
58 39 ltpnfd φX<+∞
59 55 57 39 58 lptioo1cn φXlimPtTopOpenfldX+∞
60 52 54 59 4 limcrecl φY
61 2 39 60 5 6 fourierdlem9 φH:ππ
62 53 a1i φ
63 61 62 fssd φH:ππ
64 63 ad2antrr φi0..^MsQiQi+1H:ππ
65 64 49 ffvelcdmd φi0..^MsQiQi+1Hs
66 7 fourierdlem43 K:ππ
67 66 a1i φi0..^MsQiQi+1K:ππ
68 67 49 ffvelcdmd φi0..^MsQiQi+1Ks
69 68 recnd φi0..^MsQiQi+1Ks
70 65 69 mulcld φi0..^MsQiQi+1HsKs
71 8 fvmpt2 sππHsKsUs=HsKs
72 49 70 71 syl2anc φi0..^MsQiQi+1Us=HsKs
73 72 70 eqeltrd φi0..^MsQiQi+1Us
74 9 10 fourierdlem18 φS:ππcn
75 cncff S:ππcnS:ππ
76 74 75 syl φS:ππ
77 76 adantr φi0..^MS:ππ
78 77 adantr φi0..^MsQiQi+1S:ππ
79 78 49 ffvelcdmd φi0..^MsQiQi+1Ss
80 79 recnd φi0..^MsQiQi+1Ss
81 eqid sQiQi+1Hs=sQiQi+1Hs
82 eqid sQiQi+1Ks=sQiQi+1Ks
83 eqid sQiQi+1HsKs=sQiQi+1HsKs
84 eqid ifVi=XERifVi<XWYQi=ifVi=XERifVi<XWYQi
85 39 1 2 3 4 5 6 12 13 14 15 16 17 18 19 84 fourierdlem75 φi0..^MifVi=XERifVi<XWYQiHQiQi+1limQi
86 61 adantr φi0..^MH:ππ
87 26 a1i φi0..^Mπ*
88 28 a1i φi0..^Mπ*
89 simpr φi0..^Mi0..^M
90 87 88 42 89 fourierdlem8 φi0..^MQiQi+1ππ
91 46 90 sstrid φi0..^MQiQi+1ππ
92 86 91 feqresmpt φi0..^MHQiQi+1=sQiQi+1Hs
93 92 oveq1d φi0..^MHQiQi+1limQi=sQiQi+1HslimQi
94 85 93 eleqtrd φi0..^MifVi=XERifVi<XWYQisQiQi+1HslimQi
95 limcresi KlimQiKQiQi+1limQi
96 ssid
97 cncfss ππcnππcn
98 53 96 97 mp2an ππcnππcn
99 7 fourierdlem62 K:ππcn
100 98 99 sselii K:ππcn
101 100 a1i φi0..^MK:ππcn
102 elfzofz i0..^Mi0M
103 102 adantl φi0..^Mi0M
104 42 103 ffvelcdmd φi0..^MQiππ
105 101 104 cnlimci φi0..^MKQiKlimQi
106 95 105 sselid φi0..^MKQiKQiQi+1limQi
107 cncff K:ππcnK:ππ
108 100 107 mp1i φi0..^MK:ππ
109 108 91 feqresmpt φi0..^MKQiQi+1=sQiQi+1Ks
110 109 oveq1d φi0..^MKQiQi+1limQi=sQiQi+1KslimQi
111 106 110 eleqtrd φi0..^MKQisQiQi+1KslimQi
112 81 82 83 65 69 94 111 mullimc φi0..^MifVi=XERifVi<XWYQiKQisQiQi+1HsKslimQi
113 72 mpteq2dva φi0..^MsQiQi+1Us=sQiQi+1HsKs
114 113 oveq1d φi0..^MsQiQi+1UslimQi=sQiQi+1HsKslimQi
115 112 114 eleqtrrd φi0..^MifVi=XERifVi<XWYQiKQisQiQi+1UslimQi
116 limcresi SlimQiSQiQi+1limQi
117 74 adantr φi0..^MS:ππcn
118 117 104 cnlimci φi0..^MSQiSlimQi
119 116 118 sselid φi0..^MSQiSQiQi+1limQi
120 77 91 feqresmpt φi0..^MSQiQi+1=sQiQi+1Ss
121 120 oveq1d φi0..^MSQiQi+1limQi=sQiQi+1SslimQi
122 119 121 eleqtrd φi0..^MSQisQiQi+1SslimQi
123 21 22 23 73 80 115 122 mullimc φi0..^MifVi=XERifVi<XWYQiKQiSQisQiQi+1UsSslimQi
124 20 123 eqeltrid φi0..^MAsQiQi+1UsSslimQi
125 11 reseq1i GQiQi+1=sππUsSsQiQi+1
126 91 resmptd φi0..^MsππUsSsQiQi+1=sQiQi+1UsSs
127 125 126 eqtr2id φi0..^MsQiQi+1UsSs=GQiQi+1
128 127 oveq1d φi0..^MsQiQi+1UsSslimQi=GQiQi+1limQi
129 124 128 eleqtrd φi0..^MAGQiQi+1limQi