Metamath Proof Explorer


Theorem fprodntriv

Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017)

Ref Expression
Hypotheses fprodntriv.1 Z=M
fprodntriv.2 φNZ
fprodntriv.3 φAMN
Assertion fprodntriv φnZyy0seqn×kZifkAB1y

Proof

Step Hyp Ref Expression
1 fprodntriv.1 Z=M
2 fprodntriv.2 φNZ
3 fprodntriv.3 φAMN
4 2 1 eleqtrdi φNM
5 peano2uz NMN+1M
6 4 5 syl φN+1M
7 6 1 eleqtrrdi φN+1Z
8 ax-1ne0 10
9 eqid N+1=N+1
10 eluzelz NMN
11 10 1 eleq2s NZN
12 2 11 syl φN
13 12 peano2zd φN+1
14 seqex seqN+1×kZifkAB1V
15 14 a1i φseqN+1×kZifkAB1V
16 1cnd φ1
17 simpr φnN+1nN+1
18 3 ad2antrr φnN+1mN+1nAMN
19 12 ad2antrr φnN+1mN+1nN
20 19 zred φnN+1mN+1nN
21 19 peano2zd φnN+1mN+1nN+1
22 21 zred φnN+1mN+1nN+1
23 elfzelz mN+1nm
24 23 adantl φnN+1mN+1nm
25 24 zred φnN+1mN+1nm
26 20 ltp1d φnN+1mN+1nN<N+1
27 elfzle1 mN+1nN+1m
28 27 adantl φnN+1mN+1nN+1m
29 20 22 25 26 28 ltletrd φnN+1mN+1nN<m
30 20 25 ltnled φnN+1mN+1nN<m¬mN
31 29 30 mpbid φnN+1mN+1n¬mN
32 31 intnand φnN+1mN+1n¬MmmN
33 32 intnand φnN+1mN+1n¬MNmMmmN
34 elfz2 mMNMNmMmmN
35 33 34 sylnibr φnN+1mN+1n¬mMN
36 18 35 ssneldd φnN+1mN+1n¬mA
37 36 iffalsed φnN+1mN+1nifmAm/kB1=1
38 fzssuz N+1nN+1
39 6 adantr φnN+1N+1M
40 uzss N+1MN+1M
41 39 40 syl φnN+1N+1M
42 41 1 sseqtrrdi φnN+1N+1Z
43 38 42 sstrid φnN+1N+1nZ
44 43 sselda φnN+1mN+1nmZ
45 ax-1cn 1
46 37 45 eqeltrdi φnN+1mN+1nifmAm/kB1
47 nfcv _km
48 nfv kmA
49 nfcsb1v _km/kB
50 nfcv _k1
51 48 49 50 nfif _kifmAm/kB1
52 eleq1w k=mkAmA
53 csbeq1a k=mB=m/kB
54 52 53 ifbieq1d k=mifkAB1=ifmAm/kB1
55 eqid kZifkAB1=kZifkAB1
56 47 51 54 55 fvmptf mZifmAm/kB1kZifkAB1m=ifmAm/kB1
57 44 46 56 syl2anc φnN+1mN+1nkZifkAB1m=ifmAm/kB1
58 elfzuz mN+1nmN+1
59 58 adantl φnN+1mN+1nmN+1
60 1ex 1V
61 60 fvconst2 mN+1N+1×1m=1
62 59 61 syl φnN+1mN+1nN+1×1m=1
63 37 57 62 3eqtr4d φnN+1mN+1nkZifkAB1m=N+1×1m
64 17 63 seqfveq φnN+1seqN+1×kZifkAB1n=seqN+1×N+1×1n
65 9 prodf1 nN+1seqN+1×N+1×1n=1
66 65 adantl φnN+1seqN+1×N+1×1n=1
67 64 66 eqtrd φnN+1seqN+1×kZifkAB1n=1
68 9 13 15 16 67 climconst φseqN+1×kZifkAB11
69 neeq1 y=1y010
70 breq2 y=1seqN+1×kZifkAB1yseqN+1×kZifkAB11
71 69 70 anbi12d y=1y0seqN+1×kZifkAB1y10seqN+1×kZifkAB11
72 60 71 spcev 10seqN+1×kZifkAB11yy0seqN+1×kZifkAB1y
73 8 68 72 sylancr φyy0seqN+1×kZifkAB1y
74 seqeq1 n=N+1seqn×kZifkAB1=seqN+1×kZifkAB1
75 74 breq1d n=N+1seqn×kZifkAB1yseqN+1×kZifkAB1y
76 75 anbi2d n=N+1y0seqn×kZifkAB1yy0seqN+1×kZifkAB1y
77 76 exbidv n=N+1yy0seqn×kZifkAB1yyy0seqN+1×kZifkAB1y
78 77 rspcev N+1Zyy0seqN+1×kZifkAB1ynZyy0seqn×kZifkAB1y
79 7 73 78 syl2anc φnZyy0seqn×kZifkAB1y