Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Finite products
fprodntriv
Next ⟩
prod0
Metamath Proof Explorer
Ascii
Unicode
Theorem
fprodntriv
Description:
A non-triviality lemma for finite sequences.
(Contributed by
Scott Fenton
, 16-Dec-2017)
Ref
Expression
Hypotheses
fprodntriv.1
⊢
Z
=
ℤ
≥
M
fprodntriv.2
⊢
φ
→
N
∈
Z
fprodntriv.3
⊢
φ
→
A
⊆
M
…
N
Assertion
fprodntriv
⊢
φ
→
∃
n
∈
Z
∃
y
y
≠
0
∧
seq
n
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
Proof
Step
Hyp
Ref
Expression
1
fprodntriv.1
⊢
Z
=
ℤ
≥
M
2
fprodntriv.2
⊢
φ
→
N
∈
Z
3
fprodntriv.3
⊢
φ
→
A
⊆
M
…
N
4
2
1
eleqtrdi
⊢
φ
→
N
∈
ℤ
≥
M
5
peano2uz
⊢
N
∈
ℤ
≥
M
→
N
+
1
∈
ℤ
≥
M
6
4
5
syl
⊢
φ
→
N
+
1
∈
ℤ
≥
M
7
6
1
eleqtrrdi
⊢
φ
→
N
+
1
∈
Z
8
ax-1ne0
⊢
1
≠
0
9
eqid
⊢
ℤ
≥
N
+
1
=
ℤ
≥
N
+
1
10
eluzelz
⊢
N
∈
ℤ
≥
M
→
N
∈
ℤ
11
10
1
eleq2s
⊢
N
∈
Z
→
N
∈
ℤ
12
2
11
syl
⊢
φ
→
N
∈
ℤ
13
12
peano2zd
⊢
φ
→
N
+
1
∈
ℤ
14
seqex
⊢
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
∈
V
15
14
a1i
⊢
φ
→
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
∈
V
16
1cnd
⊢
φ
→
1
∈
ℂ
17
simpr
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
→
n
∈
ℤ
≥
N
+
1
18
3
ad2antrr
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
A
⊆
M
…
N
19
12
ad2antrr
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
N
∈
ℤ
20
19
zred
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
N
∈
ℝ
21
19
peano2zd
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
N
+
1
∈
ℤ
22
21
zred
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
N
+
1
∈
ℝ
23
elfzelz
⊢
m
∈
N
+
1
…
n
→
m
∈
ℤ
24
23
adantl
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
m
∈
ℤ
25
24
zred
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
m
∈
ℝ
26
20
ltp1d
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
N
<
N
+
1
27
elfzle1
⊢
m
∈
N
+
1
…
n
→
N
+
1
≤
m
28
27
adantl
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
N
+
1
≤
m
29
20
22
25
26
28
ltletrd
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
N
<
m
30
20
25
ltnled
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
N
<
m
↔
¬
m
≤
N
31
29
30
mpbid
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
¬
m
≤
N
32
31
intnand
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
¬
M
≤
m
∧
m
≤
N
33
32
intnand
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
¬
M
∈
ℤ
∧
N
∈
ℤ
∧
m
∈
ℤ
∧
M
≤
m
∧
m
≤
N
34
elfz2
⊢
m
∈
M
…
N
↔
M
∈
ℤ
∧
N
∈
ℤ
∧
m
∈
ℤ
∧
M
≤
m
∧
m
≤
N
35
33
34
sylnibr
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
¬
m
∈
M
…
N
36
18
35
ssneldd
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
¬
m
∈
A
37
36
iffalsed
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
if
m
∈
A
⦋
m
/
k
⦌
B
1
=
1
38
fzssuz
⊢
N
+
1
…
n
⊆
ℤ
≥
N
+
1
39
6
adantr
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
→
N
+
1
∈
ℤ
≥
M
40
uzss
⊢
N
+
1
∈
ℤ
≥
M
→
ℤ
≥
N
+
1
⊆
ℤ
≥
M
41
39
40
syl
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
→
ℤ
≥
N
+
1
⊆
ℤ
≥
M
42
41
1
sseqtrrdi
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
→
ℤ
≥
N
+
1
⊆
Z
43
38
42
sstrid
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
→
N
+
1
…
n
⊆
Z
44
43
sselda
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
m
∈
Z
45
ax-1cn
⊢
1
∈
ℂ
46
37
45
eqeltrdi
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
if
m
∈
A
⦋
m
/
k
⦌
B
1
∈
ℂ
47
nfcv
⊢
Ⅎ
_
k
m
48
nfv
⊢
Ⅎ
k
m
∈
A
49
nfcsb1v
⦋
⦌
⊢
Ⅎ
_
k
⦋
m
/
k
⦌
B
50
nfcv
⊢
Ⅎ
_
k
1
51
48
49
50
nfif
⦋
⦌
⊢
Ⅎ
_
k
if
m
∈
A
⦋
m
/
k
⦌
B
1
52
eleq1w
⊢
k
=
m
→
k
∈
A
↔
m
∈
A
53
csbeq1a
⦋
⦌
⊢
k
=
m
→
B
=
⦋
m
/
k
⦌
B
54
52
53
ifbieq1d
⦋
⦌
⊢
k
=
m
→
if
k
∈
A
B
1
=
if
m
∈
A
⦋
m
/
k
⦌
B
1
55
eqid
⊢
k
∈
Z
⟼
if
k
∈
A
B
1
=
k
∈
Z
⟼
if
k
∈
A
B
1
56
47
51
54
55
fvmptf
⦋
⦌
⦋
⦌
⊢
m
∈
Z
∧
if
m
∈
A
⦋
m
/
k
⦌
B
1
∈
ℂ
→
k
∈
Z
⟼
if
k
∈
A
B
1
m
=
if
m
∈
A
⦋
m
/
k
⦌
B
1
57
44
46
56
syl2anc
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
k
∈
Z
⟼
if
k
∈
A
B
1
m
=
if
m
∈
A
⦋
m
/
k
⦌
B
1
58
elfzuz
⊢
m
∈
N
+
1
…
n
→
m
∈
ℤ
≥
N
+
1
59
58
adantl
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
m
∈
ℤ
≥
N
+
1
60
1ex
⊢
1
∈
V
61
60
fvconst2
⊢
m
∈
ℤ
≥
N
+
1
→
ℤ
≥
N
+
1
×
1
m
=
1
62
59
61
syl
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
ℤ
≥
N
+
1
×
1
m
=
1
63
37
57
62
3eqtr4d
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
∧
m
∈
N
+
1
…
n
→
k
∈
Z
⟼
if
k
∈
A
B
1
m
=
ℤ
≥
N
+
1
×
1
m
64
17
63
seqfveq
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
→
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
n
=
seq
N
+
1
×
ℤ
≥
N
+
1
×
1
n
65
9
prodf1
⊢
n
∈
ℤ
≥
N
+
1
→
seq
N
+
1
×
ℤ
≥
N
+
1
×
1
n
=
1
66
65
adantl
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
→
seq
N
+
1
×
ℤ
≥
N
+
1
×
1
n
=
1
67
64
66
eqtrd
⊢
φ
∧
n
∈
ℤ
≥
N
+
1
→
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
n
=
1
68
9
13
15
16
67
climconst
⊢
φ
→
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
1
69
neeq1
⊢
y
=
1
→
y
≠
0
↔
1
≠
0
70
breq2
⊢
y
=
1
→
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
↔
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
1
71
69
70
anbi12d
⊢
y
=
1
→
y
≠
0
∧
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
↔
1
≠
0
∧
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
1
72
60
71
spcev
⊢
1
≠
0
∧
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
1
→
∃
y
y
≠
0
∧
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
73
8
68
72
sylancr
⊢
φ
→
∃
y
y
≠
0
∧
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
74
seqeq1
⊢
n
=
N
+
1
→
seq
n
×
k
∈
Z
⟼
if
k
∈
A
B
1
=
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
75
74
breq1d
⊢
n
=
N
+
1
→
seq
n
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
↔
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
76
75
anbi2d
⊢
n
=
N
+
1
→
y
≠
0
∧
seq
n
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
↔
y
≠
0
∧
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
77
76
exbidv
⊢
n
=
N
+
1
→
∃
y
y
≠
0
∧
seq
n
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
↔
∃
y
y
≠
0
∧
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
78
77
rspcev
⊢
N
+
1
∈
Z
∧
∃
y
y
≠
0
∧
seq
N
+
1
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
→
∃
n
∈
Z
∃
y
y
≠
0
∧
seq
n
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y
79
7
73
78
syl2anc
⊢
φ
→
∃
n
∈
Z
∃
y
y
≠
0
∧
seq
n
×
k
∈
Z
⟼
if
k
∈
A
B
1
⇝
y