| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmsnic.w |
|
| 2 |
|
frlmsnic.1 |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
snex |
|
| 10 |
1
|
frlmlmod |
|
| 11 |
9 10
|
mpan2 |
|
| 12 |
11
|
adantr |
|
| 13 |
|
rlmlmod |
|
| 14 |
13
|
adantr |
|
| 15 |
|
rlmsca |
|
| 16 |
15
|
adantr |
|
| 17 |
1
|
frlmsca |
|
| 18 |
9 17
|
mpan2 |
|
| 19 |
18
|
adantr |
|
| 20 |
16 19
|
eqtr3d |
|
| 21 |
|
rlmbas |
|
| 22 |
|
eqid |
|
| 23 |
|
rlmplusg |
|
| 24 |
|
lmodgrp |
|
| 25 |
12 24
|
syl |
|
| 26 |
|
lmodgrp |
|
| 27 |
13 26
|
syl |
|
| 28 |
27
|
adantr |
|
| 29 |
|
eqid |
|
| 30 |
1 29 3
|
frlmbasf |
|
| 31 |
9 30
|
mpan |
|
| 32 |
31
|
adantl |
|
| 33 |
|
snidg |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
adantr |
|
| 36 |
32 35
|
ffvelcdmd |
|
| 37 |
36 2
|
fmptd |
|
| 38 |
|
simpll |
|
| 39 |
9
|
a1i |
|
| 40 |
|
simprl |
|
| 41 |
|
simprr |
|
| 42 |
34
|
adantr |
|
| 43 |
|
eqid |
|
| 44 |
1 3 38 39 40 41 42 43 22
|
frlmvplusgvalc |
|
| 45 |
12
|
adantr |
|
| 46 |
3 22
|
lmodvacl |
|
| 47 |
45 40 41 46
|
syl3anc |
|
| 48 |
|
fveq1 |
|
| 49 |
|
fveq1 |
|
| 50 |
49
|
cbvmptv |
|
| 51 |
2 50
|
eqtri |
|
| 52 |
|
fvexd |
|
| 53 |
48 51 52
|
fvmpt3 |
|
| 54 |
47 53
|
syl |
|
| 55 |
2
|
a1i |
|
| 56 |
|
fvexd |
|
| 57 |
55 56
|
fvmpt2d |
|
| 58 |
40 57
|
mpdan |
|
| 59 |
|
fveq1 |
|
| 60 |
|
fvexd |
|
| 61 |
59 2 60
|
fvmpt3 |
|
| 62 |
41 61
|
syl |
|
| 63 |
58 62
|
oveq12d |
|
| 64 |
44 54 63
|
3eqtr4d |
|
| 65 |
3 21 22 23 25 28 37 64
|
isghmd |
|
| 66 |
9
|
a1i |
|
| 67 |
19
|
eqcomd |
|
| 68 |
67
|
fveq2d |
|
| 69 |
68
|
eleq2d |
|
| 70 |
69
|
biimpa |
|
| 71 |
70
|
adantrr |
|
| 72 |
|
simprr |
|
| 73 |
34
|
adantr |
|
| 74 |
|
eqid |
|
| 75 |
1 3 29 66 71 72 73 4 74
|
frlmvscaval |
|
| 76 |
|
rlmvsca |
|
| 77 |
76
|
oveqi |
|
| 78 |
75 77
|
eqtrdi |
|
| 79 |
|
fveq1 |
|
| 80 |
79
|
cbvmptv |
|
| 81 |
2 80
|
eqtri |
|
| 82 |
|
fveq1 |
|
| 83 |
9
|
a1i |
|
| 84 |
83 10
|
sylan2 |
|
| 85 |
84
|
adantr |
|
| 86 |
|
simprl |
|
| 87 |
3 6 4 8 85 86 72
|
lmodvscld |
|
| 88 |
|
fvexd |
|
| 89 |
81 82 87 88
|
fvmptd3 |
|
| 90 |
|
fvex |
|
| 91 |
59 2 90
|
fvmpt3i |
|
| 92 |
72 91
|
syl |
|
| 93 |
92
|
oveq2d |
|
| 94 |
78 89 93
|
3eqtr4d |
|
| 95 |
3 4 5 6 7 8 12 14 20 65 94
|
islmhmd |
|
| 96 |
|
simplr |
|
| 97 |
|
simpr |
|
| 98 |
96 97
|
fsnd |
|
| 99 |
|
simpll |
|
| 100 |
|
snfi |
|
| 101 |
1 29 3
|
frlmfielbas |
|
| 102 |
99 100 101
|
sylancl |
|
| 103 |
98 102
|
mpbird |
|
| 104 |
|
fveq1 |
|
| 105 |
104
|
adantl |
|
| 106 |
|
simpllr |
|
| 107 |
|
vex |
|
| 108 |
|
fvsng |
|
| 109 |
106 107 108
|
sylancl |
|
| 110 |
105 109
|
eqtr2d |
|
| 111 |
110
|
ex |
|
| 112 |
|
simplr |
|
| 113 |
32
|
adantrr |
|
| 114 |
113
|
ffnd |
|
| 115 |
|
fnsnbg |
|
| 116 |
115
|
biimpd |
|
| 117 |
112 114 116
|
sylc |
|
| 118 |
|
opeq2 |
|
| 119 |
118
|
sneqd |
|
| 120 |
119
|
eqeq2d |
|
| 121 |
117 120
|
syl5ibrcom |
|
| 122 |
111 121
|
impbid |
|
| 123 |
2 36 103 122
|
f1o2d |
|
| 124 |
21
|
a1i |
|
| 125 |
124
|
f1oeq3d |
|
| 126 |
123 125
|
mpbid |
|
| 127 |
|
eqid |
|
| 128 |
3 127
|
islmim |
|
| 129 |
95 126 128
|
sylanbrc |
|