Metamath Proof Explorer


Theorem frrlem12

Description: Lemma for well-founded recursion. Next, we calculate the value of C . (Contributed by Scott Fenton, 7-Dec-2022)

Ref Expression
Hypotheses frrlem11.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
frrlem11.2 F=frecsRAG
frrlem11.3 φgBhBxguxhvu=v
frrlem11.4 C=FSzzGFPredRAz
frrlem12.5 φRFrA
frrlem12.6 φzAPredRAzS
frrlem12.7 φzAwSPredRAwS
Assertion frrlem12 φzAdomFwSdomFzCw=wGCPredRAw

Proof

Step Hyp Ref Expression
1 frrlem11.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
2 frrlem11.2 F=frecsRAG
3 frrlem11.3 φgBhBxguxhvu=v
4 frrlem11.4 C=FSzzGFPredRAz
5 frrlem12.5 φRFrA
6 frrlem12.6 φzAPredRAzS
7 frrlem12.7 φzAwSPredRAwS
8 elun wSdomFzwSdomFwz
9 velsn wzw=z
10 9 orbi2i wSdomFwzwSdomFw=z
11 8 10 bitri wSdomFzwSdomFw=z
12 elinel2 wSdomFwdomF
13 1 frrlem1 B=p|qpFnqqAwqPredRAwqwqpw=wGpPredRAw
14 breq1 x=qxguqgu
15 breq1 x=qxhvqhv
16 14 15 anbi12d x=qxguxhvqguqhv
17 16 imbi1d x=qxguxhvu=vqguqhvu=v
18 17 imbi2d x=qφgBhBxguxhvu=vφgBhBqguqhvu=v
19 18 3 chvarvv φgBhBqguqhvu=v
20 13 2 19 frrlem10 φwdomFFw=wGFPredRAw
21 12 20 sylan2 φwSdomFFw=wGFPredRAw
22 21 adantlr φzAdomFwSdomFFw=wGFPredRAw
23 4 fveq1i Cw=FSzzGFPredRAzw
24 1 2 3 frrlem9 φFunF
25 24 funresd φFunFS
26 dmres domFS=SdomF
27 df-fn FSFnSdomFFunFSdomFS=SdomF
28 25 26 27 sylanblrc φFSFnSdomF
29 28 adantr φzAdomFFSFnSdomF
30 29 adantr φzAdomFwSdomFFSFnSdomF
31 vex zV
32 ovex zGFPredRAzV
33 31 32 fnsn zzGFPredRAzFnz
34 33 a1i φzAdomFwSdomFzzGFPredRAzFnz
35 eldifn zAdomF¬zdomF
36 elinel2 zSdomFzdomF
37 35 36 nsyl zAdomF¬zSdomF
38 disjsn SdomFz=¬zSdomF
39 37 38 sylibr zAdomFSdomFz=
40 39 adantl φzAdomFSdomFz=
41 40 adantr φzAdomFwSdomFSdomFz=
42 simpr φzAdomFwSdomFwSdomF
43 fvun1 FSFnSdomFzzGFPredRAzFnzSdomFz=wSdomFFSzzGFPredRAzw=FSw
44 30 34 41 42 43 syl112anc φzAdomFwSdomFFSzzGFPredRAzw=FSw
45 23 44 eqtrid φzAdomFwSdomFCw=FSw
46 elinel1 wSdomFwS
47 46 adantl φzAdomFwSdomFwS
48 47 fvresd φzAdomFwSdomFFSw=Fw
49 45 48 eqtrd φzAdomFwSdomFCw=Fw
50 1 2 3 4 frrlem11 φzAdomFCFnSdomFz
51 fnfun CFnSdomFzFunC
52 50 51 syl φzAdomFFunC
53 52 adantr φzAdomFwSdomFFunC
54 ssun1 FSFSzzGFPredRAz
55 54 4 sseqtrri FSC
56 55 a1i φzAdomFwSdomFFSC
57 eldifi zAdomFzA
58 57 7 sylan2 φzAdomFwSPredRAwS
59 rspa wSPredRAwSwSPredRAwS
60 58 46 59 syl2an φzAdomFwSdomFPredRAwS
61 1 2 frrlem8 wdomFPredRAwdomF
62 12 61 syl wSdomFPredRAwdomF
63 62 adantl φzAdomFwSdomFPredRAwdomF
64 60 63 ssind φzAdomFwSdomFPredRAwSdomF
65 64 26 sseqtrrdi φzAdomFwSdomFPredRAwdomFS
66 fun2ssres FunCFSCPredRAwdomFSCPredRAw=FSPredRAw
67 53 56 65 66 syl3anc φzAdomFwSdomFCPredRAw=FSPredRAw
68 60 resabs1d φzAdomFwSdomFFSPredRAw=FPredRAw
69 67 68 eqtrd φzAdomFwSdomFCPredRAw=FPredRAw
70 69 oveq2d φzAdomFwSdomFwGCPredRAw=wGFPredRAw
71 22 49 70 3eqtr4d φzAdomFwSdomFCw=wGCPredRAw
72 71 ex φzAdomFwSdomFCw=wGCPredRAw
73 31 32 fvsn zzGFPredRAzz=zGFPredRAz
74 4 fveq1i Cz=FSzzGFPredRAzz
75 33 a1i φzAdomFzzGFPredRAzFnz
76 vsnid zz
77 76 a1i φzAdomFzz
78 fvun2 FSFnSdomFzzGFPredRAzFnzSdomFz=zzFSzzGFPredRAzz=zzGFPredRAzz
79 29 75 40 77 78 syl112anc φzAdomFFSzzGFPredRAzz=zzGFPredRAzz
80 74 79 eqtrid φzAdomFCz=zzGFPredRAzz
81 4 reseq1i CPredRAz=FSzzGFPredRAzPredRAz
82 resundir FSzzGFPredRAzPredRAz=FSPredRAzzzGFPredRAzPredRAz
83 81 82 eqtri CPredRAz=FSPredRAzzzGFPredRAzPredRAz
84 57 6 sylan2 φzAdomFPredRAzS
85 84 resabs1d φzAdomFFSPredRAz=FPredRAz
86 predfrirr RFrA¬zPredRAz
87 5 86 syl φ¬zPredRAz
88 87 adantr φzAdomF¬zPredRAz
89 ressnop0 ¬zPredRAzzzGFPredRAzPredRAz=
90 88 89 syl φzAdomFzzGFPredRAzPredRAz=
91 85 90 uneq12d φzAdomFFSPredRAzzzGFPredRAzPredRAz=FPredRAz
92 un0 FPredRAz=FPredRAz
93 91 92 eqtrdi φzAdomFFSPredRAzzzGFPredRAzPredRAz=FPredRAz
94 83 93 eqtrid φzAdomFCPredRAz=FPredRAz
95 94 oveq2d φzAdomFzGCPredRAz=zGFPredRAz
96 73 80 95 3eqtr4a φzAdomFCz=zGCPredRAz
97 fveq2 w=zCw=Cz
98 id w=zw=z
99 predeq3 w=zPredRAw=PredRAz
100 99 reseq2d w=zCPredRAw=CPredRAz
101 98 100 oveq12d w=zwGCPredRAw=zGCPredRAz
102 97 101 eqeq12d w=zCw=wGCPredRAwCz=zGCPredRAz
103 96 102 syl5ibrcom φzAdomFw=zCw=wGCPredRAw
104 72 103 jaod φzAdomFwSdomFw=zCw=wGCPredRAw
105 11 104 biimtrid φzAdomFwSdomFzCw=wGCPredRAw
106 105 3impia φzAdomFwSdomFzCw=wGCPredRAw