| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frrlem11.1 |
|
| 2 |
|
frrlem11.2 |
|
| 3 |
|
frrlem11.3 |
|
| 4 |
|
frrlem11.4 |
|
| 5 |
|
frrlem12.5 |
|
| 6 |
|
frrlem12.6 |
|
| 7 |
|
frrlem12.7 |
|
| 8 |
|
elun |
|
| 9 |
|
velsn |
|
| 10 |
9
|
orbi2i |
|
| 11 |
8 10
|
bitri |
|
| 12 |
|
elinel2 |
|
| 13 |
1
|
frrlem1 |
|
| 14 |
|
breq1 |
|
| 15 |
|
breq1 |
|
| 16 |
14 15
|
anbi12d |
|
| 17 |
16
|
imbi1d |
|
| 18 |
17
|
imbi2d |
|
| 19 |
18 3
|
chvarvv |
|
| 20 |
13 2 19
|
frrlem10 |
|
| 21 |
12 20
|
sylan2 |
|
| 22 |
21
|
adantlr |
|
| 23 |
4
|
fveq1i |
|
| 24 |
1 2 3
|
frrlem9 |
|
| 25 |
24
|
funresd |
|
| 26 |
|
dmres |
|
| 27 |
|
df-fn |
|
| 28 |
25 26 27
|
sylanblrc |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
adantr |
|
| 31 |
|
vex |
|
| 32 |
|
ovex |
|
| 33 |
31 32
|
fnsn |
|
| 34 |
33
|
a1i |
|
| 35 |
|
eldifn |
|
| 36 |
|
elinel2 |
|
| 37 |
35 36
|
nsyl |
|
| 38 |
|
disjsn |
|
| 39 |
37 38
|
sylibr |
|
| 40 |
39
|
adantl |
|
| 41 |
40
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
|
fvun1 |
|
| 44 |
30 34 41 42 43
|
syl112anc |
|
| 45 |
23 44
|
eqtrid |
|
| 46 |
|
elinel1 |
|
| 47 |
46
|
adantl |
|
| 48 |
47
|
fvresd |
|
| 49 |
45 48
|
eqtrd |
|
| 50 |
1 2 3 4
|
frrlem11 |
|
| 51 |
|
fnfun |
|
| 52 |
50 51
|
syl |
|
| 53 |
52
|
adantr |
|
| 54 |
|
ssun1 |
|
| 55 |
54 4
|
sseqtrri |
|
| 56 |
55
|
a1i |
|
| 57 |
|
eldifi |
|
| 58 |
57 7
|
sylan2 |
|
| 59 |
|
rspa |
|
| 60 |
58 46 59
|
syl2an |
|
| 61 |
1 2
|
frrlem8 |
|
| 62 |
12 61
|
syl |
|
| 63 |
62
|
adantl |
|
| 64 |
60 63
|
ssind |
|
| 65 |
64 26
|
sseqtrrdi |
|
| 66 |
|
fun2ssres |
|
| 67 |
53 56 65 66
|
syl3anc |
|
| 68 |
60
|
resabs1d |
|
| 69 |
67 68
|
eqtrd |
|
| 70 |
69
|
oveq2d |
|
| 71 |
22 49 70
|
3eqtr4d |
|
| 72 |
71
|
ex |
|
| 73 |
31 32
|
fvsn |
|
| 74 |
4
|
fveq1i |
|
| 75 |
33
|
a1i |
|
| 76 |
|
vsnid |
|
| 77 |
76
|
a1i |
|
| 78 |
|
fvun2 |
|
| 79 |
29 75 40 77 78
|
syl112anc |
|
| 80 |
74 79
|
eqtrid |
|
| 81 |
4
|
reseq1i |
|
| 82 |
|
resundir |
|
| 83 |
81 82
|
eqtri |
|
| 84 |
57 6
|
sylan2 |
|
| 85 |
84
|
resabs1d |
|
| 86 |
|
predfrirr |
|
| 87 |
5 86
|
syl |
|
| 88 |
87
|
adantr |
|
| 89 |
|
ressnop0 |
|
| 90 |
88 89
|
syl |
|
| 91 |
85 90
|
uneq12d |
|
| 92 |
|
un0 |
|
| 93 |
91 92
|
eqtrdi |
|
| 94 |
83 93
|
eqtrid |
|
| 95 |
94
|
oveq2d |
|
| 96 |
73 80 95
|
3eqtr4a |
|
| 97 |
|
fveq2 |
|
| 98 |
|
id |
|
| 99 |
|
predeq3 |
|
| 100 |
99
|
reseq2d |
|
| 101 |
98 100
|
oveq12d |
|
| 102 |
97 101
|
eqeq12d |
|
| 103 |
96 102
|
syl5ibrcom |
|
| 104 |
72 103
|
jaod |
|
| 105 |
11 104
|
biimtrid |
|
| 106 |
105
|
3impia |
|