Metamath Proof Explorer


Theorem fsovrfovd

Description: The operator which gives a 1-to-1 a mapping to a subset and a reverse mapping from elements can be composed from the operator which gives a 1-to-1 mapping between relations and functions to subsets and the converse operator. (Contributed by RP, 15-May-2021)

Ref Expression
Hypotheses fsovd.fs O=aV,bVf𝒫baybxa|yfx
fsovd.a φAV
fsovd.b φBW
fsovd.rf R=aV,bVr𝒫a×buavb|urv
fsovd.cnv C=aV,bVs𝒫a×bs-1
Assertion fsovrfovd φAOB=BRAACBARB-1

Proof

Step Hyp Ref Expression
1 fsovd.fs O=aV,bVf𝒫baybxa|yfx
2 fsovd.a φAV
3 fsovd.b φBW
4 fsovd.rf R=aV,bVr𝒫a×buavb|urv
5 fsovd.cnv C=aV,bVs𝒫a×bs-1
6 3 2 xpexd φB×AV
7 6 adantr φf𝒫BAB×AV
8 elmapi f𝒫BAf:A𝒫B
9 8 ffvelcdmda f𝒫BAuAfu𝒫B
10 9 elpwid f𝒫BAuAfuB
11 10 sseld f𝒫BAuAvfuvB
12 11 impancom f𝒫BAvfuuAvB
13 12 pm4.71d f𝒫BAvfuuAuAvB
14 13 ex f𝒫BAvfuuAuAvB
15 14 pm5.32rd f𝒫BAuAvfuuAvBvfu
16 ancom uAvBvBuA
17 16 anbi1i uAvBvfuvBuAvfu
18 15 17 bitrdi f𝒫BAuAvfuvBuAvfu
19 18 opabbidv f𝒫BAvu|uAvfu=vu|vBuAvfu
20 opabssxp vu|vBuAvfuB×A
21 19 20 eqsstrdi f𝒫BAvu|uAvfuB×A
22 21 adantl φf𝒫BAvu|uAvfuB×A
23 7 22 sselpwd φf𝒫BAvu|uAvfu𝒫B×A
24 eqidd φf𝒫BAvu|uAvfu=f𝒫BAvu|uAvfu
25 4 3 2 rfovd φBRA=r𝒫B×AuBvA|urv
26 breq r=turvutv
27 26 rabbidv r=tvA|urv=vA|utv
28 27 mpteq2dv r=tuBvA|urv=uBvA|utv
29 breq1 u=cutvctv
30 29 rabbidv u=cvA|utv=vA|ctv
31 breq2 v=dctvctd
32 31 cbvrabv vA|ctv=dA|ctd
33 30 32 eqtrdi u=cvA|utv=dA|ctd
34 33 cbvmptv uBvA|utv=cBdA|ctd
35 28 34 eqtrdi r=tuBvA|urv=cBdA|ctd
36 35 cbvmptv r𝒫B×AuBvA|urv=t𝒫B×AcBdA|ctd
37 25 36 eqtrdi φBRA=t𝒫B×AcBdA|ctd
38 breq t=vu|uAvfuctdcvu|uAvfud
39 df-br cvu|uAvfudcdvu|uAvfu
40 vex cV
41 vex dV
42 eleq1w v=cvfucfu
43 42 anbi2d v=cuAvfuuAcfu
44 eleq1w u=duAdA
45 fveq2 u=dfu=fd
46 45 eleq2d u=dcfucfd
47 44 46 anbi12d u=duAcfudAcfd
48 40 41 43 47 opelopab cdvu|uAvfudAcfd
49 39 48 bitri cvu|uAvfuddAcfd
50 38 49 bitrdi t=vu|uAvfuctddAcfd
51 50 rabbidv t=vu|uAvfudA|ctd=dA|dAcfd
52 51 mpteq2dv t=vu|uAvfucBdA|ctd=cBdA|dAcfd
53 ibar dAcfddAcfd
54 53 bicomd dAdAcfdcfd
55 54 rabbiia dA|dAcfd=dA|cfd
56 fveq2 d=xfd=fx
57 56 eleq2d d=xcfdcfx
58 57 cbvrabv dA|cfd=xA|cfx
59 55 58 eqtri dA|dAcfd=xA|cfx
60 59 mpteq2i cBdA|dAcfd=cBxA|cfx
61 eleq1w c=ycfxyfx
62 61 rabbidv c=yxA|cfx=xA|yfx
63 62 cbvmptv cBxA|cfx=yBxA|yfx
64 60 63 eqtri cBdA|dAcfd=yBxA|yfx
65 52 64 eqtrdi t=vu|uAvfucBdA|ctd=yBxA|yfx
66 23 24 37 65 fmptco φBRAf𝒫BAvu|uAvfu=f𝒫BAyBxA|yfx
67 2 3 xpexd φA×BV
68 67 adantr φf𝒫BAA×BV
69 15 opabbidv f𝒫BAuv|uAvfu=uv|uAvBvfu
70 opabssxp uv|uAvBvfuA×B
71 69 70 eqsstrdi f𝒫BAuv|uAvfuA×B
72 71 adantl φf𝒫BAuv|uAvfuA×B
73 68 72 sselpwd φf𝒫BAuv|uAvfu𝒫A×B
74 eqid ARB=ARB
75 4 2 3 74 rfovcnvd φARB-1=f𝒫BAuv|uAvfu
76 5 a1i φC=aV,bVs𝒫a×bs-1
77 xpeq12 a=Ab=Ba×b=A×B
78 77 pweqd a=Ab=B𝒫a×b=𝒫A×B
79 78 mpteq1d a=Ab=Bs𝒫a×bs-1=s𝒫A×Bs-1
80 79 adantl φa=Ab=Bs𝒫a×bs-1=s𝒫A×Bs-1
81 2 elexd φAV
82 3 elexd φBV
83 pwexg A×BV𝒫A×BV
84 mptexg 𝒫A×BVs𝒫A×Bs-1V
85 67 83 84 3syl φs𝒫A×Bs-1V
86 76 80 81 82 85 ovmpod φACB=s𝒫A×Bs-1
87 cnveq s=uv|uAvfus-1=uv|uAvfu-1
88 cnvopab uv|uAvfu-1=vu|uAvfu
89 87 88 eqtrdi s=uv|uAvfus-1=vu|uAvfu
90 73 75 86 89 fmptco φACBARB-1=f𝒫BAvu|uAvfu
91 90 coeq2d φBRAACBARB-1=BRAf𝒫BAvu|uAvfu
92 1 2 3 fsovd φAOB=f𝒫BAyBxA|yfx
93 66 91 92 3eqtr4rd φAOB=BRAACBARB-1