Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Bernoulli polynomials and sums of k-th powers
fsumcube
Next ⟩
Elementary trigonometry
Metamath Proof Explorer
Ascii
Unicode
Theorem
fsumcube
Description:
Express the sum of cubes in closed terms.
(Contributed by
Scott Fenton
, 16-Jun-2015)
Ref
Expression
Assertion
fsumcube
⊢
T
∈
ℕ
0
→
∑
k
=
0
T
k
3
=
T
2
T
+
1
2
4
Proof
Step
Hyp
Ref
Expression
1
3nn0
⊢
3
∈
ℕ
0
2
fsumkthpow
⊢
3
∈
ℕ
0
∧
T
∈
ℕ
0
→
∑
k
=
0
T
k
3
=
3
+
1
BernPoly
T
+
1
−
3
+
1
BernPoly
0
3
+
1
3
1
2
mpan
⊢
T
∈
ℕ
0
→
∑
k
=
0
T
k
3
=
3
+
1
BernPoly
T
+
1
−
3
+
1
BernPoly
0
3
+
1
4
df-4
⊢
4
=
3
+
1
5
4
oveq1i
⊢
4
BernPoly
T
+
1
=
3
+
1
BernPoly
T
+
1
6
4
oveq1i
⊢
4
BernPoly
0
=
3
+
1
BernPoly
0
7
5
6
oveq12i
⊢
4
BernPoly
T
+
1
−
4
BernPoly
0
=
3
+
1
BernPoly
T
+
1
−
3
+
1
BernPoly
0
8
7
4
oveq12i
⊢
4
BernPoly
T
+
1
−
4
BernPoly
0
4
=
3
+
1
BernPoly
T
+
1
−
3
+
1
BernPoly
0
3
+
1
9
nn0cn
⊢
T
∈
ℕ
0
→
T
∈
ℂ
10
peano2cn
⊢
T
∈
ℂ
→
T
+
1
∈
ℂ
11
9
10
syl
⊢
T
∈
ℕ
0
→
T
+
1
∈
ℂ
12
bpoly4
⊢
T
+
1
∈
ℂ
→
4
BernPoly
T
+
1
=
T
+
1
4
−
2
T
+
1
3
+
T
+
1
2
-
1
30
13
11
12
syl
⊢
T
∈
ℕ
0
→
4
BernPoly
T
+
1
=
T
+
1
4
−
2
T
+
1
3
+
T
+
1
2
-
1
30
14
4nn
⊢
4
∈
ℕ
15
0exp
⊢
4
∈
ℕ
→
0
4
=
0
16
14
15
ax-mp
⊢
0
4
=
0
17
3nn
⊢
3
∈
ℕ
18
0exp
⊢
3
∈
ℕ
→
0
3
=
0
19
17
18
ax-mp
⊢
0
3
=
0
20
19
oveq2i
⊢
2
0
3
=
2
⋅
0
21
2t0e0
⊢
2
⋅
0
=
0
22
20
21
eqtri
⊢
2
0
3
=
0
23
16
22
oveq12i
⊢
0
4
−
2
0
3
=
0
−
0
24
0m0e0
⊢
0
−
0
=
0
25
23
24
eqtri
⊢
0
4
−
2
0
3
=
0
26
sq0
⊢
0
2
=
0
27
25
26
oveq12i
⊢
0
4
-
2
0
3
+
0
2
=
0
+
0
28
00id
⊢
0
+
0
=
0
29
27
28
eqtri
⊢
0
4
-
2
0
3
+
0
2
=
0
30
29
oveq1i
⊢
0
4
−
2
0
3
+
0
2
-
1
30
=
0
−
1
30
31
0cn
⊢
0
∈
ℂ
32
bpoly4
⊢
0
∈
ℂ
→
4
BernPoly
0
=
0
4
−
2
0
3
+
0
2
-
1
30
33
31
32
ax-mp
⊢
4
BernPoly
0
=
0
4
−
2
0
3
+
0
2
-
1
30
34
df-neg
⊢
−
1
30
=
0
−
1
30
35
30
33
34
3eqtr4i
⊢
4
BernPoly
0
=
−
1
30
36
35
a1i
⊢
T
∈
ℕ
0
→
4
BernPoly
0
=
−
1
30
37
13
36
oveq12d
⊢
T
∈
ℕ
0
→
4
BernPoly
T
+
1
−
4
BernPoly
0
=
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
-
1
30
-
−
1
30
38
4nn0
⊢
4
∈
ℕ
0
39
expcl
⊢
T
+
1
∈
ℂ
∧
4
∈
ℕ
0
→
T
+
1
4
∈
ℂ
40
38
39
mpan2
⊢
T
+
1
∈
ℂ
→
T
+
1
4
∈
ℂ
41
2cn
⊢
2
∈
ℂ
42
expcl
⊢
T
+
1
∈
ℂ
∧
3
∈
ℕ
0
→
T
+
1
3
∈
ℂ
43
1
42
mpan2
⊢
T
+
1
∈
ℂ
→
T
+
1
3
∈
ℂ
44
mulcl
⊢
2
∈
ℂ
∧
T
+
1
3
∈
ℂ
→
2
T
+
1
3
∈
ℂ
45
41
43
44
sylancr
⊢
T
+
1
∈
ℂ
→
2
T
+
1
3
∈
ℂ
46
40
45
subcld
⊢
T
+
1
∈
ℂ
→
T
+
1
4
−
2
T
+
1
3
∈
ℂ
47
sqcl
⊢
T
+
1
∈
ℂ
→
T
+
1
2
∈
ℂ
48
46
47
addcld
⊢
T
+
1
∈
ℂ
→
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
∈
ℂ
49
10
48
syl
⊢
T
∈
ℂ
→
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
∈
ℂ
50
9
49
syl
⊢
T
∈
ℕ
0
→
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
∈
ℂ
51
0nn0
⊢
0
∈
ℕ
0
52
1
51
deccl
⊢
30
∈
ℕ
0
53
52
nn0cni
⊢
30
∈
ℂ
54
52
nn0rei
⊢
30
∈
ℝ
55
10pos
⊢
0
<
10
56
17
51
51
55
declti
⊢
0
<
30
57
54
56
gt0ne0ii
⊢
30
≠
0
58
53
57
reccli
⊢
1
30
∈
ℂ
59
subcl
⊢
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
∈
ℂ
∧
1
30
∈
ℂ
→
T
+
1
4
−
2
T
+
1
3
+
T
+
1
2
-
1
30
∈
ℂ
60
50
58
59
sylancl
⊢
T
∈
ℕ
0
→
T
+
1
4
−
2
T
+
1
3
+
T
+
1
2
-
1
30
∈
ℂ
61
subneg
⊢
T
+
1
4
−
2
T
+
1
3
+
T
+
1
2
-
1
30
∈
ℂ
∧
1
30
∈
ℂ
→
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
-
1
30
-
−
1
30
=
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
-
1
30
+
1
30
62
60
58
61
sylancl
⊢
T
∈
ℕ
0
→
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
-
1
30
-
−
1
30
=
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
-
1
30
+
1
30
63
npcan
⊢
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
∈
ℂ
∧
1
30
∈
ℂ
→
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
-
1
30
+
1
30
=
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
64
49
58
63
sylancl
⊢
T
∈
ℂ
→
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
-
1
30
+
1
30
=
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
65
9
64
syl
⊢
T
∈
ℕ
0
→
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
-
1
30
+
1
30
=
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
66
2p2e4
⊢
2
+
2
=
4
67
66
eqcomi
⊢
4
=
2
+
2
68
67
oveq2i
⊢
T
+
1
4
=
T
+
1
2
+
2
69
df-3
⊢
3
=
2
+
1
70
69
oveq2i
⊢
T
+
1
3
=
T
+
1
2
+
1
71
70
oveq2i
⊢
2
T
+
1
3
=
2
T
+
1
2
+
1
72
68
71
oveq12i
⊢
T
+
1
4
−
2
T
+
1
3
=
T
+
1
2
+
2
−
2
T
+
1
2
+
1
73
72
oveq1i
⊢
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
=
T
+
1
2
+
2
-
2
T
+
1
2
+
1
+
T
+
1
2
74
2nn0
⊢
2
∈
ℕ
0
75
expadd
⊢
T
+
1
∈
ℂ
∧
2
∈
ℕ
0
∧
2
∈
ℕ
0
→
T
+
1
2
+
2
=
T
+
1
2
T
+
1
2
76
74
74
75
mp3an23
⊢
T
+
1
∈
ℂ
→
T
+
1
2
+
2
=
T
+
1
2
T
+
1
2
77
1nn0
⊢
1
∈
ℕ
0
78
expadd
⊢
T
+
1
∈
ℂ
∧
2
∈
ℕ
0
∧
1
∈
ℕ
0
→
T
+
1
2
+
1
=
T
+
1
2
T
+
1
1
79
74
77
78
mp3an23
⊢
T
+
1
∈
ℂ
→
T
+
1
2
+
1
=
T
+
1
2
T
+
1
1
80
79
oveq2d
⊢
T
+
1
∈
ℂ
→
2
T
+
1
2
+
1
=
2
T
+
1
2
T
+
1
1
81
76
80
oveq12d
⊢
T
+
1
∈
ℂ
→
T
+
1
2
+
2
−
2
T
+
1
2
+
1
=
T
+
1
2
T
+
1
2
−
2
T
+
1
2
T
+
1
1
82
10
81
syl
⊢
T
∈
ℂ
→
T
+
1
2
+
2
−
2
T
+
1
2
+
1
=
T
+
1
2
T
+
1
2
−
2
T
+
1
2
T
+
1
1
83
10
sqcld
⊢
T
∈
ℂ
→
T
+
1
2
∈
ℂ
84
83
mulridd
⊢
T
∈
ℂ
→
T
+
1
2
⋅
1
=
T
+
1
2
85
84
eqcomd
⊢
T
∈
ℂ
→
T
+
1
2
=
T
+
1
2
⋅
1
86
82
85
oveq12d
⊢
T
∈
ℂ
→
T
+
1
2
+
2
-
2
T
+
1
2
+
1
+
T
+
1
2
=
T
+
1
2
T
+
1
2
-
2
T
+
1
2
T
+
1
1
+
T
+
1
2
⋅
1
87
10
exp1d
⊢
T
∈
ℂ
→
T
+
1
1
=
T
+
1
88
87
oveq2d
⊢
T
∈
ℂ
→
2
T
+
1
1
=
2
T
+
1
89
88
oveq2d
⊢
T
∈
ℂ
→
T
+
1
2
2
T
+
1
1
=
T
+
1
2
2
T
+
1
90
89
oveq2d
⊢
T
∈
ℂ
→
T
+
1
2
T
+
1
2
−
T
+
1
2
2
T
+
1
1
=
T
+
1
2
T
+
1
2
−
T
+
1
2
2
T
+
1
91
87
10
eqeltrd
⊢
T
∈
ℂ
→
T
+
1
1
∈
ℂ
92
mul12
⊢
2
∈
ℂ
∧
T
+
1
2
∈
ℂ
∧
T
+
1
1
∈
ℂ
→
2
T
+
1
2
T
+
1
1
=
T
+
1
2
2
T
+
1
1
93
41
83
91
92
mp3an2i
⊢
T
∈
ℂ
→
2
T
+
1
2
T
+
1
1
=
T
+
1
2
2
T
+
1
1
94
93
oveq2d
⊢
T
∈
ℂ
→
T
+
1
2
T
+
1
2
−
2
T
+
1
2
T
+
1
1
=
T
+
1
2
T
+
1
2
−
T
+
1
2
2
T
+
1
1
95
mulcl
⊢
2
∈
ℂ
∧
T
+
1
∈
ℂ
→
2
T
+
1
∈
ℂ
96
41
10
95
sylancr
⊢
T
∈
ℂ
→
2
T
+
1
∈
ℂ
97
83
83
96
subdid
⊢
T
∈
ℂ
→
T
+
1
2
T
+
1
2
−
2
T
+
1
=
T
+
1
2
T
+
1
2
−
T
+
1
2
2
T
+
1
98
90
94
97
3eqtr4d
⊢
T
∈
ℂ
→
T
+
1
2
T
+
1
2
−
2
T
+
1
2
T
+
1
1
=
T
+
1
2
T
+
1
2
−
2
T
+
1
99
98
oveq1d
⊢
T
∈
ℂ
→
T
+
1
2
T
+
1
2
-
2
T
+
1
2
T
+
1
1
+
T
+
1
2
⋅
1
=
T
+
1
2
T
+
1
2
−
2
T
+
1
+
T
+
1
2
⋅
1
100
83
96
subcld
⊢
T
∈
ℂ
→
T
+
1
2
−
2
T
+
1
∈
ℂ
101
ax-1cn
⊢
1
∈
ℂ
102
adddi
⊢
T
+
1
2
∈
ℂ
∧
T
+
1
2
−
2
T
+
1
∈
ℂ
∧
1
∈
ℂ
→
T
+
1
2
T
+
1
2
-
2
T
+
1
+
1
=
T
+
1
2
T
+
1
2
−
2
T
+
1
+
T
+
1
2
⋅
1
103
101
102
mp3an3
⊢
T
+
1
2
∈
ℂ
∧
T
+
1
2
−
2
T
+
1
∈
ℂ
→
T
+
1
2
T
+
1
2
-
2
T
+
1
+
1
=
T
+
1
2
T
+
1
2
−
2
T
+
1
+
T
+
1
2
⋅
1
104
83
100
103
syl2anc
⊢
T
∈
ℂ
→
T
+
1
2
T
+
1
2
-
2
T
+
1
+
1
=
T
+
1
2
T
+
1
2
−
2
T
+
1
+
T
+
1
2
⋅
1
105
99
104
eqtr4d
⊢
T
∈
ℂ
→
T
+
1
2
T
+
1
2
-
2
T
+
1
2
T
+
1
1
+
T
+
1
2
⋅
1
=
T
+
1
2
T
+
1
2
-
2
T
+
1
+
1
106
adddi
⊢
2
∈
ℂ
∧
T
∈
ℂ
∧
1
∈
ℂ
→
2
T
+
1
=
2
T
+
2
⋅
1
107
41
101
106
mp3an13
⊢
T
∈
ℂ
→
2
T
+
1
=
2
T
+
2
⋅
1
108
2t1e2
⊢
2
⋅
1
=
2
109
108
oveq2i
⊢
2
T
+
2
⋅
1
=
2
T
+
2
110
107
109
eqtrdi
⊢
T
∈
ℂ
→
2
T
+
1
=
2
T
+
2
111
110
oveq1d
⊢
T
∈
ℂ
→
2
T
+
1
−
1
=
2
T
+
2
-
1
112
mulcl
⊢
2
∈
ℂ
∧
T
∈
ℂ
→
2
T
∈
ℂ
113
41
112
mpan
⊢
T
∈
ℂ
→
2
T
∈
ℂ
114
addsubass
⊢
2
T
∈
ℂ
∧
2
∈
ℂ
∧
1
∈
ℂ
→
2
T
+
2
-
1
=
2
T
+
2
-
1
115
41
101
114
mp3an23
⊢
2
T
∈
ℂ
→
2
T
+
2
-
1
=
2
T
+
2
-
1
116
113
115
syl
⊢
T
∈
ℂ
→
2
T
+
2
-
1
=
2
T
+
2
-
1
117
2m1e1
⊢
2
−
1
=
1
118
117
oveq2i
⊢
2
T
+
2
-
1
=
2
T
+
1
119
116
118
eqtrdi
⊢
T
∈
ℂ
→
2
T
+
2
-
1
=
2
T
+
1
120
111
119
eqtrd
⊢
T
∈
ℂ
→
2
T
+
1
−
1
=
2
T
+
1
121
120
oveq2d
⊢
T
∈
ℂ
→
T
+
1
2
−
2
T
+
1
−
1
=
T
+
1
2
−
2
T
+
1
122
subsub
⊢
T
+
1
2
∈
ℂ
∧
2
T
+
1
∈
ℂ
∧
1
∈
ℂ
→
T
+
1
2
−
2
T
+
1
−
1
=
T
+
1
2
-
2
T
+
1
+
1
123
101
122
mp3an3
⊢
T
+
1
2
∈
ℂ
∧
2
T
+
1
∈
ℂ
→
T
+
1
2
−
2
T
+
1
−
1
=
T
+
1
2
-
2
T
+
1
+
1
124
83
96
123
syl2anc
⊢
T
∈
ℂ
→
T
+
1
2
−
2
T
+
1
−
1
=
T
+
1
2
-
2
T
+
1
+
1
125
sqcl
⊢
T
∈
ℂ
→
T
2
∈
ℂ
126
peano2cn
⊢
2
T
∈
ℂ
→
2
T
+
1
∈
ℂ
127
113
126
syl
⊢
T
∈
ℂ
→
2
T
+
1
∈
ℂ
128
binom21
⊢
T
∈
ℂ
→
T
+
1
2
=
T
2
+
2
T
+
1
129
addass
⊢
T
2
∈
ℂ
∧
2
T
∈
ℂ
∧
1
∈
ℂ
→
T
2
+
2
T
+
1
=
T
2
+
2
T
+
1
130
101
129
mp3an3
⊢
T
2
∈
ℂ
∧
2
T
∈
ℂ
→
T
2
+
2
T
+
1
=
T
2
+
2
T
+
1
131
125
113
130
syl2anc
⊢
T
∈
ℂ
→
T
2
+
2
T
+
1
=
T
2
+
2
T
+
1
132
128
131
eqtrd
⊢
T
∈
ℂ
→
T
+
1
2
=
T
2
+
2
T
+
1
133
125
127
132
mvrraddd
⊢
T
∈
ℂ
→
T
+
1
2
−
2
T
+
1
=
T
2
134
121
124
133
3eqtr3d
⊢
T
∈
ℂ
→
T
+
1
2
-
2
T
+
1
+
1
=
T
2
135
134
oveq2d
⊢
T
∈
ℂ
→
T
+
1
2
T
+
1
2
-
2
T
+
1
+
1
=
T
+
1
2
T
2
136
83
125
mulcomd
⊢
T
∈
ℂ
→
T
+
1
2
T
2
=
T
2
T
+
1
2
137
105
135
136
3eqtrd
⊢
T
∈
ℂ
→
T
+
1
2
T
+
1
2
-
2
T
+
1
2
T
+
1
1
+
T
+
1
2
⋅
1
=
T
2
T
+
1
2
138
86
137
eqtrd
⊢
T
∈
ℂ
→
T
+
1
2
+
2
-
2
T
+
1
2
+
1
+
T
+
1
2
=
T
2
T
+
1
2
139
9
138
syl
⊢
T
∈
ℕ
0
→
T
+
1
2
+
2
-
2
T
+
1
2
+
1
+
T
+
1
2
=
T
2
T
+
1
2
140
73
139
eqtrid
⊢
T
∈
ℕ
0
→
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
=
T
2
T
+
1
2
141
65
140
eqtrd
⊢
T
∈
ℕ
0
→
T
+
1
4
-
2
T
+
1
3
+
T
+
1
2
-
1
30
+
1
30
=
T
2
T
+
1
2
142
37
62
141
3eqtrd
⊢
T
∈
ℕ
0
→
4
BernPoly
T
+
1
−
4
BernPoly
0
=
T
2
T
+
1
2
143
142
oveq1d
⊢
T
∈
ℕ
0
→
4
BernPoly
T
+
1
−
4
BernPoly
0
4
=
T
2
T
+
1
2
4
144
8
143
eqtr3id
⊢
T
∈
ℕ
0
→
3
+
1
BernPoly
T
+
1
−
3
+
1
BernPoly
0
3
+
1
=
T
2
T
+
1
2
4
145
3
144
eqtrd
⊢
T
∈
ℕ
0
→
∑
k
=
0
T
k
3
=
T
2
T
+
1
2
4