Metamath Proof Explorer


Theorem fsumcube

Description: Express the sum of cubes in closed terms. (Contributed by Scott Fenton, 16-Jun-2015)

Ref Expression
Assertion fsumcube T0k=0Tk3=T2T+124

Proof

Step Hyp Ref Expression
1 3nn0 30
2 fsumkthpow 30T0k=0Tk3=3+1BernPolyT+13+1BernPoly03+1
3 1 2 mpan T0k=0Tk3=3+1BernPolyT+13+1BernPoly03+1
4 df-4 4=3+1
5 4 oveq1i 4BernPolyT+1=3+1BernPolyT+1
6 4 oveq1i 4BernPoly0=3+1BernPoly0
7 5 6 oveq12i 4BernPolyT+14BernPoly0=3+1BernPolyT+13+1BernPoly0
8 7 4 oveq12i 4BernPolyT+14BernPoly04=3+1BernPolyT+13+1BernPoly03+1
9 nn0cn T0T
10 peano2cn TT+1
11 9 10 syl T0T+1
12 bpoly4 T+14BernPolyT+1=T+142T+13+T+12-130
13 11 12 syl T04BernPolyT+1=T+142T+13+T+12-130
14 4nn 4
15 0exp 404=0
16 14 15 ax-mp 04=0
17 3nn 3
18 0exp 303=0
19 17 18 ax-mp 03=0
20 19 oveq2i 203=20
21 2t0e0 20=0
22 20 21 eqtri 203=0
23 16 22 oveq12i 04203=00
24 0m0e0 00=0
25 23 24 eqtri 04203=0
26 sq0 02=0
27 25 26 oveq12i 04-203+02=0+0
28 00id 0+0=0
29 27 28 eqtri 04-203+02=0
30 29 oveq1i 04203+02-130=0130
31 0cn 0
32 bpoly4 04BernPoly0=04203+02-130
33 31 32 ax-mp 4BernPoly0=04203+02-130
34 df-neg 130=0130
35 30 33 34 3eqtr4i 4BernPoly0=130
36 35 a1i T04BernPoly0=130
37 13 36 oveq12d T04BernPolyT+14BernPoly0=T+14-2T+13+T+12-130-130
38 4nn0 40
39 expcl T+140T+14
40 38 39 mpan2 T+1T+14
41 2cn 2
42 expcl T+130T+13
43 1 42 mpan2 T+1T+13
44 mulcl 2T+132T+13
45 41 43 44 sylancr T+12T+13
46 40 45 subcld T+1T+142T+13
47 sqcl T+1T+12
48 46 47 addcld T+1T+14-2T+13+T+12
49 10 48 syl TT+14-2T+13+T+12
50 9 49 syl T0T+14-2T+13+T+12
51 0nn0 00
52 1 51 deccl 300
53 52 nn0cni 30
54 52 nn0rei 30
55 10pos 0<10
56 17 51 51 55 declti 0<30
57 54 56 gt0ne0ii 300
58 53 57 reccli 130
59 subcl T+14-2T+13+T+12130T+142T+13+T+12-130
60 50 58 59 sylancl T0T+142T+13+T+12-130
61 subneg T+142T+13+T+12-130130T+14-2T+13+T+12-130-130=T+14-2T+13+T+12-130+130
62 60 58 61 sylancl T0T+14-2T+13+T+12-130-130=T+14-2T+13+T+12-130+130
63 npcan T+14-2T+13+T+12130T+14-2T+13+T+12-130+130=T+14-2T+13+T+12
64 49 58 63 sylancl TT+14-2T+13+T+12-130+130=T+14-2T+13+T+12
65 9 64 syl T0T+14-2T+13+T+12-130+130=T+14-2T+13+T+12
66 2p2e4 2+2=4
67 66 eqcomi 4=2+2
68 67 oveq2i T+14=T+12+2
69 df-3 3=2+1
70 69 oveq2i T+13=T+12+1
71 70 oveq2i 2T+13=2T+12+1
72 68 71 oveq12i T+142T+13=T+12+22T+12+1
73 72 oveq1i T+14-2T+13+T+12=T+12+2-2T+12+1+T+12
74 2nn0 20
75 expadd T+12020T+12+2=T+12T+12
76 74 74 75 mp3an23 T+1T+12+2=T+12T+12
77 1nn0 10
78 expadd T+12010T+12+1=T+12T+11
79 74 77 78 mp3an23 T+1T+12+1=T+12T+11
80 79 oveq2d T+12T+12+1=2T+12T+11
81 76 80 oveq12d T+1T+12+22T+12+1=T+12T+122T+12T+11
82 10 81 syl TT+12+22T+12+1=T+12T+122T+12T+11
83 10 sqcld TT+12
84 83 mulridd TT+121=T+12
85 84 eqcomd TT+12=T+121
86 82 85 oveq12d TT+12+2-2T+12+1+T+12=T+12T+12-2T+12T+11+T+121
87 10 exp1d TT+11=T+1
88 87 oveq2d T2T+11=2T+1
89 88 oveq2d TT+122T+11=T+122T+1
90 89 oveq2d TT+12T+12T+122T+11=T+12T+12T+122T+1
91 87 10 eqeltrd TT+11
92 mul12 2T+12T+112T+12T+11=T+122T+11
93 41 83 91 92 mp3an2i T2T+12T+11=T+122T+11
94 93 oveq2d TT+12T+122T+12T+11=T+12T+12T+122T+11
95 mulcl 2T+12T+1
96 41 10 95 sylancr T2T+1
97 83 83 96 subdid TT+12T+122T+1=T+12T+12T+122T+1
98 90 94 97 3eqtr4d TT+12T+122T+12T+11=T+12T+122T+1
99 98 oveq1d TT+12T+12-2T+12T+11+T+121=T+12T+122T+1+T+121
100 83 96 subcld TT+122T+1
101 ax-1cn 1
102 adddi T+12T+122T+11T+12T+12-2T+1+1=T+12T+122T+1+T+121
103 101 102 mp3an3 T+12T+122T+1T+12T+12-2T+1+1=T+12T+122T+1+T+121
104 83 100 103 syl2anc TT+12T+12-2T+1+1=T+12T+122T+1+T+121
105 99 104 eqtr4d TT+12T+12-2T+12T+11+T+121=T+12T+12-2T+1+1
106 adddi 2T12T+1=2T+21
107 41 101 106 mp3an13 T2T+1=2T+21
108 2t1e2 21=2
109 108 oveq2i 2T+21=2T+2
110 107 109 eqtrdi T2T+1=2T+2
111 110 oveq1d T2T+11=2T+2-1
112 mulcl 2T2T
113 41 112 mpan T2T
114 addsubass 2T212T+2-1=2T+2-1
115 41 101 114 mp3an23 2T2T+2-1=2T+2-1
116 113 115 syl T2T+2-1=2T+2-1
117 2m1e1 21=1
118 117 oveq2i 2T+2-1=2T+1
119 116 118 eqtrdi T2T+2-1=2T+1
120 111 119 eqtrd T2T+11=2T+1
121 120 oveq2d TT+122T+11=T+122T+1
122 subsub T+122T+11T+122T+11=T+12-2T+1+1
123 101 122 mp3an3 T+122T+1T+122T+11=T+12-2T+1+1
124 83 96 123 syl2anc TT+122T+11=T+12-2T+1+1
125 sqcl TT2
126 peano2cn 2T2T+1
127 113 126 syl T2T+1
128 binom21 TT+12=T2+2T+1
129 addass T22T1T2+2T+1=T2+2T+1
130 101 129 mp3an3 T22TT2+2T+1=T2+2T+1
131 125 113 130 syl2anc TT2+2T+1=T2+2T+1
132 128 131 eqtrd TT+12=T2+2T+1
133 125 127 132 mvrraddd TT+122T+1=T2
134 121 124 133 3eqtr3d TT+12-2T+1+1=T2
135 134 oveq2d TT+12T+12-2T+1+1=T+12T2
136 83 125 mulcomd TT+12T2=T2T+12
137 105 135 136 3eqtrd TT+12T+12-2T+12T+11+T+121=T2T+12
138 86 137 eqtrd TT+12+2-2T+12+1+T+12=T2T+12
139 9 138 syl T0T+12+2-2T+12+1+T+12=T2T+12
140 73 139 eqtrid T0T+14-2T+13+T+12=T2T+12
141 65 140 eqtrd T0T+14-2T+13+T+12-130+130=T2T+12
142 37 62 141 3eqtrd T04BernPolyT+14BernPoly0=T2T+12
143 142 oveq1d T04BernPolyT+14BernPoly04=T2T+124
144 8 143 eqtr3id T03+1BernPolyT+13+1BernPoly03+1=T2T+124
145 3 144 eqtrd T0k=0Tk3=T2T+124