Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Gauss' Lemma
gausslemma2dlem3
Next ⟩
gausslemma2dlem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
gausslemma2dlem3
Description:
Lemma 3 for
gausslemma2d
.
(Contributed by
AV
, 4-Jul-2021)
Ref
Expression
Hypotheses
gausslemma2d.p
⊢
φ
→
P
∈
ℙ
∖
2
gausslemma2d.h
⊢
H
=
P
−
1
2
gausslemma2d.r
⊢
R
=
x
∈
1
…
H
⟼
if
x
⋅
2
<
P
2
x
⋅
2
P
−
x
⋅
2
gausslemma2d.m
⊢
M
=
P
4
Assertion
gausslemma2dlem3
⊢
φ
→
∀
k
∈
M
+
1
…
H
R
k
=
P
−
k
⋅
2
Proof
Step
Hyp
Ref
Expression
1
gausslemma2d.p
⊢
φ
→
P
∈
ℙ
∖
2
2
gausslemma2d.h
⊢
H
=
P
−
1
2
3
gausslemma2d.r
⊢
R
=
x
∈
1
…
H
⟼
if
x
⋅
2
<
P
2
x
⋅
2
P
−
x
⋅
2
4
gausslemma2d.m
⊢
M
=
P
4
5
oveq1
⊢
x
=
k
→
x
⋅
2
=
k
⋅
2
6
5
breq1d
⊢
x
=
k
→
x
⋅
2
<
P
2
↔
k
⋅
2
<
P
2
7
5
oveq2d
⊢
x
=
k
→
P
−
x
⋅
2
=
P
−
k
⋅
2
8
6
5
7
ifbieq12d
⊢
x
=
k
→
if
x
⋅
2
<
P
2
x
⋅
2
P
−
x
⋅
2
=
if
k
⋅
2
<
P
2
k
⋅
2
P
−
k
⋅
2
9
8
adantl
⊢
φ
∧
k
∈
M
+
1
…
H
∧
x
=
k
→
if
x
⋅
2
<
P
2
x
⋅
2
P
−
x
⋅
2
=
if
k
⋅
2
<
P
2
k
⋅
2
P
−
k
⋅
2
10
1
gausslemma2dlem0a
⊢
φ
→
P
∈
ℕ
11
elfz2
⊢
k
∈
M
+
1
…
H
↔
M
+
1
∈
ℤ
∧
H
∈
ℤ
∧
k
∈
ℤ
∧
M
+
1
≤
k
∧
k
≤
H
12
4
oveq1i
⊢
M
+
1
=
P
4
+
1
13
12
breq1i
⊢
M
+
1
≤
k
↔
P
4
+
1
≤
k
14
nnre
⊢
P
∈
ℕ
→
P
∈
ℝ
15
4re
⊢
4
∈
ℝ
16
15
a1i
⊢
P
∈
ℕ
→
4
∈
ℝ
17
4ne0
⊢
4
≠
0
18
17
a1i
⊢
P
∈
ℕ
→
4
≠
0
19
14
16
18
redivcld
⊢
P
∈
ℕ
→
P
4
∈
ℝ
20
19
adantl
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
P
4
∈
ℝ
21
fllelt
⊢
P
4
∈
ℝ
→
P
4
≤
P
4
∧
P
4
<
P
4
+
1
22
20
21
syl
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
P
4
≤
P
4
∧
P
4
<
P
4
+
1
23
19
flcld
⊢
P
∈
ℕ
→
P
4
∈
ℤ
24
23
zred
⊢
P
∈
ℕ
→
P
4
∈
ℝ
25
peano2re
⊢
P
4
∈
ℝ
→
P
4
+
1
∈
ℝ
26
24
25
syl
⊢
P
∈
ℕ
→
P
4
+
1
∈
ℝ
27
26
adantl
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
P
4
+
1
∈
ℝ
28
zre
⊢
k
∈
ℤ
→
k
∈
ℝ
29
28
adantr
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
k
∈
ℝ
30
ltleletr
⊢
P
4
∈
ℝ
∧
P
4
+
1
∈
ℝ
∧
k
∈
ℝ
→
P
4
<
P
4
+
1
∧
P
4
+
1
≤
k
→
P
4
≤
k
31
20
27
29
30
syl3anc
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
P
4
<
P
4
+
1
∧
P
4
+
1
≤
k
→
P
4
≤
k
32
31
expd
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
P
4
<
P
4
+
1
→
P
4
+
1
≤
k
→
P
4
≤
k
33
32
adantld
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
P
4
≤
P
4
∧
P
4
<
P
4
+
1
→
P
4
+
1
≤
k
→
P
4
≤
k
34
22
33
mpd
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
P
4
+
1
≤
k
→
P
4
≤
k
35
34
imp
⊢
k
∈
ℤ
∧
P
∈
ℕ
∧
P
4
+
1
≤
k
→
P
4
≤
k
36
14
rehalfcld
⊢
P
∈
ℕ
→
P
2
∈
ℝ
37
36
adantl
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
P
2
∈
ℝ
38
2re
⊢
2
∈
ℝ
39
38
a1i
⊢
k
∈
ℤ
→
2
∈
ℝ
40
28
39
remulcld
⊢
k
∈
ℤ
→
k
⋅
2
∈
ℝ
41
40
adantr
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
k
⋅
2
∈
ℝ
42
2pos
⊢
0
<
2
43
38
42
pm3.2i
⊢
2
∈
ℝ
∧
0
<
2
44
43
a1i
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
2
∈
ℝ
∧
0
<
2
45
lediv1
⊢
P
2
∈
ℝ
∧
k
⋅
2
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
P
2
≤
k
⋅
2
↔
P
2
2
≤
k
⋅
2
2
46
37
41
44
45
syl3anc
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
P
2
≤
k
⋅
2
↔
P
2
2
≤
k
⋅
2
2
47
nncn
⊢
P
∈
ℕ
→
P
∈
ℂ
48
2cnne0
⊢
2
∈
ℂ
∧
2
≠
0
49
48
a1i
⊢
P
∈
ℕ
→
2
∈
ℂ
∧
2
≠
0
50
divdiv1
⊢
P
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
∧
2
∈
ℂ
∧
2
≠
0
→
P
2
2
=
P
2
⋅
2
51
47
49
49
50
syl3anc
⊢
P
∈
ℕ
→
P
2
2
=
P
2
⋅
2
52
2t2e4
⊢
2
⋅
2
=
4
53
52
oveq2i
⊢
P
2
⋅
2
=
P
4
54
51
53
eqtrdi
⊢
P
∈
ℕ
→
P
2
2
=
P
4
55
zcn
⊢
k
∈
ℤ
→
k
∈
ℂ
56
2cnd
⊢
k
∈
ℤ
→
2
∈
ℂ
57
2ne0
⊢
2
≠
0
58
57
a1i
⊢
k
∈
ℤ
→
2
≠
0
59
55
56
58
divcan4d
⊢
k
∈
ℤ
→
k
⋅
2
2
=
k
60
54
59
breqan12rd
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
P
2
2
≤
k
⋅
2
2
↔
P
4
≤
k
61
46
60
bitrd
⊢
k
∈
ℤ
∧
P
∈
ℕ
→
P
2
≤
k
⋅
2
↔
P
4
≤
k
62
61
adantr
⊢
k
∈
ℤ
∧
P
∈
ℕ
∧
P
4
+
1
≤
k
→
P
2
≤
k
⋅
2
↔
P
4
≤
k
63
35
62
mpbird
⊢
k
∈
ℤ
∧
P
∈
ℕ
∧
P
4
+
1
≤
k
→
P
2
≤
k
⋅
2
64
63
exp31
⊢
k
∈
ℤ
→
P
∈
ℕ
→
P
4
+
1
≤
k
→
P
2
≤
k
⋅
2
65
64
com23
⊢
k
∈
ℤ
→
P
4
+
1
≤
k
→
P
∈
ℕ
→
P
2
≤
k
⋅
2
66
13
65
biimtrid
⊢
k
∈
ℤ
→
M
+
1
≤
k
→
P
∈
ℕ
→
P
2
≤
k
⋅
2
67
66
3ad2ant3
⊢
M
+
1
∈
ℤ
∧
H
∈
ℤ
∧
k
∈
ℤ
→
M
+
1
≤
k
→
P
∈
ℕ
→
P
2
≤
k
⋅
2
68
67
com12
⊢
M
+
1
≤
k
→
M
+
1
∈
ℤ
∧
H
∈
ℤ
∧
k
∈
ℤ
→
P
∈
ℕ
→
P
2
≤
k
⋅
2
69
68
adantr
⊢
M
+
1
≤
k
∧
k
≤
H
→
M
+
1
∈
ℤ
∧
H
∈
ℤ
∧
k
∈
ℤ
→
P
∈
ℕ
→
P
2
≤
k
⋅
2
70
69
impcom
⊢
M
+
1
∈
ℤ
∧
H
∈
ℤ
∧
k
∈
ℤ
∧
M
+
1
≤
k
∧
k
≤
H
→
P
∈
ℕ
→
P
2
≤
k
⋅
2
71
11
70
sylbi
⊢
k
∈
M
+
1
…
H
→
P
∈
ℕ
→
P
2
≤
k
⋅
2
72
71
impcom
⊢
P
∈
ℕ
∧
k
∈
M
+
1
…
H
→
P
2
≤
k
⋅
2
73
elfzelz
⊢
k
∈
M
+
1
…
H
→
k
∈
ℤ
74
73
zred
⊢
k
∈
M
+
1
…
H
→
k
∈
ℝ
75
38
a1i
⊢
k
∈
M
+
1
…
H
→
2
∈
ℝ
76
74
75
remulcld
⊢
k
∈
M
+
1
…
H
→
k
⋅
2
∈
ℝ
77
lenlt
⊢
P
2
∈
ℝ
∧
k
⋅
2
∈
ℝ
→
P
2
≤
k
⋅
2
↔
¬
k
⋅
2
<
P
2
78
36
76
77
syl2an
⊢
P
∈
ℕ
∧
k
∈
M
+
1
…
H
→
P
2
≤
k
⋅
2
↔
¬
k
⋅
2
<
P
2
79
72
78
mpbid
⊢
P
∈
ℕ
∧
k
∈
M
+
1
…
H
→
¬
k
⋅
2
<
P
2
80
10
79
sylan
⊢
φ
∧
k
∈
M
+
1
…
H
→
¬
k
⋅
2
<
P
2
81
80
adantr
⊢
φ
∧
k
∈
M
+
1
…
H
∧
x
=
k
→
¬
k
⋅
2
<
P
2
82
81
iffalsed
⊢
φ
∧
k
∈
M
+
1
…
H
∧
x
=
k
→
if
k
⋅
2
<
P
2
k
⋅
2
P
−
k
⋅
2
=
P
−
k
⋅
2
83
9
82
eqtrd
⊢
φ
∧
k
∈
M
+
1
…
H
∧
x
=
k
→
if
x
⋅
2
<
P
2
x
⋅
2
P
−
x
⋅
2
=
P
−
k
⋅
2
84
1
4
gausslemma2dlem0d
⊢
φ
→
M
∈
ℕ
0
85
nn0p1nn
⊢
M
∈
ℕ
0
→
M
+
1
∈
ℕ
86
nnuz
⊢
ℕ
=
ℤ
≥
1
87
85
86
eleqtrdi
⊢
M
∈
ℕ
0
→
M
+
1
∈
ℤ
≥
1
88
84
87
syl
⊢
φ
→
M
+
1
∈
ℤ
≥
1
89
fzss1
⊢
M
+
1
∈
ℤ
≥
1
→
M
+
1
…
H
⊆
1
…
H
90
88
89
syl
⊢
φ
→
M
+
1
…
H
⊆
1
…
H
91
90
sselda
⊢
φ
∧
k
∈
M
+
1
…
H
→
k
∈
1
…
H
92
ovexd
⊢
φ
∧
k
∈
M
+
1
…
H
→
P
−
k
⋅
2
∈
V
93
3
83
91
92
fvmptd2
⊢
φ
∧
k
∈
M
+
1
…
H
→
R
k
=
P
−
k
⋅
2
94
93
ralrimiva
⊢
φ
→
∀
k
∈
M
+
1
…
H
R
k
=
P
−
k
⋅
2