Metamath Proof Explorer


Theorem gausslemma2dlem3

Description: Lemma 3 for gausslemma2d . (Contributed by AV, 4-Jul-2021)

Ref Expression
Hypotheses gausslemma2d.p φP2
gausslemma2d.h H=P12
gausslemma2d.r R=x1Hifx2<P2x2Px2
gausslemma2d.m M=P4
Assertion gausslemma2dlem3 φkM+1HRk=Pk2

Proof

Step Hyp Ref Expression
1 gausslemma2d.p φP2
2 gausslemma2d.h H=P12
3 gausslemma2d.r R=x1Hifx2<P2x2Px2
4 gausslemma2d.m M=P4
5 oveq1 x=kx2=k2
6 5 breq1d x=kx2<P2k2<P2
7 5 oveq2d x=kPx2=Pk2
8 6 5 7 ifbieq12d x=kifx2<P2x2Px2=ifk2<P2k2Pk2
9 8 adantl φkM+1Hx=kifx2<P2x2Px2=ifk2<P2k2Pk2
10 1 gausslemma2dlem0a φP
11 elfz2 kM+1HM+1HkM+1kkH
12 4 oveq1i M+1=P4+1
13 12 breq1i M+1kP4+1k
14 nnre PP
15 4re 4
16 15 a1i P4
17 4ne0 40
18 17 a1i P40
19 14 16 18 redivcld PP4
20 19 adantl kPP4
21 fllelt P4P4P4P4<P4+1
22 20 21 syl kPP4P4P4<P4+1
23 19 flcld PP4
24 23 zred PP4
25 peano2re P4P4+1
26 24 25 syl PP4+1
27 26 adantl kPP4+1
28 zre kk
29 28 adantr kPk
30 ltleletr P4P4+1kP4<P4+1P4+1kP4k
31 20 27 29 30 syl3anc kPP4<P4+1P4+1kP4k
32 31 expd kPP4<P4+1P4+1kP4k
33 32 adantld kPP4P4P4<P4+1P4+1kP4k
34 22 33 mpd kPP4+1kP4k
35 34 imp kPP4+1kP4k
36 14 rehalfcld PP2
37 36 adantl kPP2
38 2re 2
39 38 a1i k2
40 28 39 remulcld kk2
41 40 adantr kPk2
42 2pos 0<2
43 38 42 pm3.2i 20<2
44 43 a1i kP20<2
45 lediv1 P2k220<2P2k2P22k22
46 37 41 44 45 syl3anc kPP2k2P22k22
47 nncn PP
48 2cnne0 220
49 48 a1i P220
50 divdiv1 P220220P22=P22
51 47 49 49 50 syl3anc PP22=P22
52 2t2e4 22=4
53 52 oveq2i P22=P4
54 51 53 eqtrdi PP22=P4
55 zcn kk
56 2cnd k2
57 2ne0 20
58 57 a1i k20
59 55 56 58 divcan4d kk22=k
60 54 59 breqan12rd kPP22k22P4k
61 46 60 bitrd kPP2k2P4k
62 61 adantr kPP4+1kP2k2P4k
63 35 62 mpbird kPP4+1kP2k2
64 63 exp31 kPP4+1kP2k2
65 64 com23 kP4+1kPP2k2
66 13 65 biimtrid kM+1kPP2k2
67 66 3ad2ant3 M+1HkM+1kPP2k2
68 67 com12 M+1kM+1HkPP2k2
69 68 adantr M+1kkHM+1HkPP2k2
70 69 impcom M+1HkM+1kkHPP2k2
71 11 70 sylbi kM+1HPP2k2
72 71 impcom PkM+1HP2k2
73 elfzelz kM+1Hk
74 73 zred kM+1Hk
75 38 a1i kM+1H2
76 74 75 remulcld kM+1Hk2
77 lenlt P2k2P2k2¬k2<P2
78 36 76 77 syl2an PkM+1HP2k2¬k2<P2
79 72 78 mpbid PkM+1H¬k2<P2
80 10 79 sylan φkM+1H¬k2<P2
81 80 adantr φkM+1Hx=k¬k2<P2
82 81 iffalsed φkM+1Hx=kifk2<P2k2Pk2=Pk2
83 9 82 eqtrd φkM+1Hx=kifx2<P2x2Px2=Pk2
84 1 4 gausslemma2dlem0d φM0
85 nn0p1nn M0M+1
86 nnuz =1
87 85 86 eleqtrdi M0M+11
88 84 87 syl φM+11
89 fzss1 M+11M+1H1H
90 88 89 syl φM+1H1H
91 90 sselda φkM+1Hk1H
92 ovexd φkM+1HPk2V
93 3 83 91 92 fvmptd2 φkM+1HRk=Pk2
94 93 ralrimiva φkM+1HRk=Pk2