Metamath Proof Explorer


Theorem gsumress

Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither G nor H need be groups. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses gsumress.b B=BaseG
gsumress.o +˙=+G
gsumress.h H=G𝑠S
gsumress.g φGV
gsumress.a φAX
gsumress.s φSB
gsumress.f φF:AS
gsumress.z φ0˙S
gsumress.c φxB0˙+˙x=xx+˙0˙=x
Assertion gsumress φGF=HF

Proof

Step Hyp Ref Expression
1 gsumress.b B=BaseG
2 gsumress.o +˙=+G
3 gsumress.h H=G𝑠S
4 gsumress.g φGV
5 gsumress.a φAX
6 gsumress.s φSB
7 gsumress.f φF:AS
8 gsumress.z φ0˙S
9 gsumress.c φxB0˙+˙x=xx+˙0˙=x
10 oveq1 y=0˙y+˙x=0˙+˙x
11 10 eqeq1d y=0˙y+˙x=x0˙+˙x=x
12 11 ovanraleqv y=0˙xBy+˙x=xx+˙y=xxB0˙+˙x=xx+˙0˙=x
13 6 8 sseldd φ0˙B
14 9 ralrimiva φxB0˙+˙x=xx+˙0˙=x
15 12 13 14 elrabd φ0˙yB|xBy+˙x=xx+˙y=x
16 15 snssd φ0˙yB|xBy+˙x=xx+˙y=x
17 eqid 0G=0G
18 eqid yB|xBy+˙x=xx+˙y=x=yB|xBy+˙x=xx+˙y=x
19 1 17 2 18 mgmidsssn0 GVyB|xBy+˙x=xx+˙y=x0G
20 4 19 syl φyB|xBy+˙x=xx+˙y=x0G
21 20 15 sseldd φ0˙0G
22 elsni 0˙0G0˙=0G
23 21 22 syl φ0˙=0G
24 23 sneqd φ0˙=0G
25 20 24 sseqtrrd φyB|xBy+˙x=xx+˙y=x0˙
26 16 25 eqssd φ0˙=yB|xBy+˙x=xx+˙y=x
27 11 ovanraleqv y=0˙xSy+˙x=xx+˙y=xxS0˙+˙x=xx+˙0˙=x
28 6 sselda φxSxB
29 28 9 syldan φxS0˙+˙x=xx+˙0˙=x
30 29 ralrimiva φxS0˙+˙x=xx+˙0˙=x
31 27 8 30 elrabd φ0˙yS|xSy+˙x=xx+˙y=x
32 3 1 ressbas2 SBS=BaseH
33 6 32 syl φS=BaseH
34 fvex BaseHV
35 33 34 eqeltrdi φSV
36 3 2 ressplusg SV+˙=+H
37 35 36 syl φ+˙=+H
38 37 oveqd φy+˙x=y+Hx
39 38 eqeq1d φy+˙x=xy+Hx=x
40 37 oveqd φx+˙y=x+Hy
41 40 eqeq1d φx+˙y=xx+Hy=x
42 39 41 anbi12d φy+˙x=xx+˙y=xy+Hx=xx+Hy=x
43 33 42 raleqbidv φxSy+˙x=xx+˙y=xxBaseHy+Hx=xx+Hy=x
44 33 43 rabeqbidv φyS|xSy+˙x=xx+˙y=x=yBaseH|xBaseHy+Hx=xx+Hy=x
45 31 44 eleqtrd φ0˙yBaseH|xBaseHy+Hx=xx+Hy=x
46 45 snssd φ0˙yBaseH|xBaseHy+Hx=xx+Hy=x
47 3 ovexi HV
48 47 a1i φHV
49 eqid BaseH=BaseH
50 eqid 0H=0H
51 eqid +H=+H
52 eqid yBaseH|xBaseHy+Hx=xx+Hy=x=yBaseH|xBaseHy+Hx=xx+Hy=x
53 49 50 51 52 mgmidsssn0 HVyBaseH|xBaseHy+Hx=xx+Hy=x0H
54 48 53 syl φyBaseH|xBaseHy+Hx=xx+Hy=x0H
55 54 45 sseldd φ0˙0H
56 elsni 0˙0H0˙=0H
57 55 56 syl φ0˙=0H
58 57 sneqd φ0˙=0H
59 54 58 sseqtrrd φyBaseH|xBaseHy+Hx=xx+Hy=x0˙
60 46 59 eqssd φ0˙=yBaseH|xBaseHy+Hx=xx+Hy=x
61 26 60 eqtr3d φyB|xBy+˙x=xx+˙y=x=yBaseH|xBaseHy+Hx=xx+Hy=x
62 61 sseq2d φranFyB|xBy+˙x=xx+˙y=xranFyBaseH|xBaseHy+Hx=xx+Hy=x
63 23 57 eqtr3d φ0G=0H
64 37 seqeq2d φseqm+˙F=seqm+HF
65 64 fveq1d φseqm+˙Fn=seqm+HFn
66 65 eqeq2d φz=seqm+˙Fnz=seqm+HFn
67 66 anbi2d φA=mnz=seqm+˙FnA=mnz=seqm+HFn
68 67 rexbidv φnmA=mnz=seqm+˙FnnmA=mnz=seqm+HFn
69 68 exbidv φmnmA=mnz=seqm+˙FnmnmA=mnz=seqm+HFn
70 69 iotabidv φιz|mnmA=mnz=seqm+˙Fn=ιz|mnmA=mnz=seqm+HFn
71 37 seqeq2d φseq1+˙Ff=seq1+HFf
72 71 fveq1d φseq1+˙FfF-1V0˙=seq1+HFfF-1V0˙
73 72 eqeq2d φz=seq1+˙FfF-1V0˙z=seq1+HFfF-1V0˙
74 73 anbi2d φf:1F-1V0˙1-1 ontoF-1V0˙z=seq1+˙FfF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙z=seq1+HFfF-1V0˙
75 74 exbidv φff:1F-1V0˙1-1 ontoF-1V0˙z=seq1+˙FfF-1V0˙ff:1F-1V0˙1-1 ontoF-1V0˙z=seq1+HFfF-1V0˙
76 75 iotabidv φιz|ff:1F-1V0˙1-1 ontoF-1V0˙z=seq1+˙FfF-1V0˙=ιz|ff:1F-1V0˙1-1 ontoF-1V0˙z=seq1+HFfF-1V0˙
77 70 76 ifeq12d φifAranιz|mnmA=mnz=seqm+˙Fnιz|ff:1F-1V0˙1-1 ontoF-1V0˙z=seq1+˙FfF-1V0˙=ifAranιz|mnmA=mnz=seqm+HFnιz|ff:1F-1V0˙1-1 ontoF-1V0˙z=seq1+HFfF-1V0˙
78 62 63 77 ifbieq12d φifranFyB|xBy+˙x=xx+˙y=x0GifAranιz|mnmA=mnz=seqm+˙Fnιz|ff:1F-1V0˙1-1 ontoF-1V0˙z=seq1+˙FfF-1V0˙=ifranFyBaseH|xBaseHy+Hx=xx+Hy=x0HifAranιz|mnmA=mnz=seqm+HFnιz|ff:1F-1V0˙1-1 ontoF-1V0˙z=seq1+HFfF-1V0˙
79 26 difeq2d φV0˙=VyB|xBy+˙x=xx+˙y=x
80 79 imaeq2d φF-1V0˙=F-1VyB|xBy+˙x=xx+˙y=x
81 7 6 fssd φF:AB
82 1 17 2 18 80 4 5 81 gsumval φGF=ifranFyB|xBy+˙x=xx+˙y=x0GifAranιz|mnmA=mnz=seqm+˙Fnιz|ff:1F-1V0˙1-1 ontoF-1V0˙z=seq1+˙FfF-1V0˙
83 60 difeq2d φV0˙=VyBaseH|xBaseHy+Hx=xx+Hy=x
84 83 imaeq2d φF-1V0˙=F-1VyBaseH|xBaseHy+Hx=xx+Hy=x
85 33 feq3d φF:ASF:ABaseH
86 7 85 mpbid φF:ABaseH
87 49 50 51 52 84 48 5 86 gsumval φHF=ifranFyBaseH|xBaseHy+Hx=xx+Hy=x0HifAranιz|mnmA=mnz=seqm+HFnιz|ff:1F-1V0˙1-1 ontoF-1V0˙z=seq1+HFfF-1V0˙
88 78 82 87 3eqtr4d φGF=HF