Metamath Proof Explorer


Theorem hdmapglem7a

Description: Lemma for hdmapg . (Contributed by NM, 14-Jun-2015)

Ref Expression
Hypotheses hdmapglem7.h H=LHypK
hdmapglem7.e E=IBaseKILTrnKW
hdmapglem7.o O=ocHKW
hdmapglem7.u U=DVecHKW
hdmapglem7.v V=BaseU
hdmapglem7.p +˙=+U
hdmapglem7.q ·˙=U
hdmapglem7.r R=ScalarU
hdmapglem7.b B=BaseR
hdmapglem7.a ˙=LSSumU
hdmapglem7.n N=LSpanU
hdmapglem7.k φKHLWH
hdmapglem7.x φXV
Assertion hdmapglem7a φuOEkBX=k·˙E+˙u

Proof

Step Hyp Ref Expression
1 hdmapglem7.h H=LHypK
2 hdmapglem7.e E=IBaseKILTrnKW
3 hdmapglem7.o O=ocHKW
4 hdmapglem7.u U=DVecHKW
5 hdmapglem7.v V=BaseU
6 hdmapglem7.p +˙=+U
7 hdmapglem7.q ·˙=U
8 hdmapglem7.r R=ScalarU
9 hdmapglem7.b B=BaseR
10 hdmapglem7.a ˙=LSSumU
11 hdmapglem7.n N=LSpanU
12 hdmapglem7.k φKHLWH
13 hdmapglem7.x φXV
14 eqid LSubSpU=LSubSpU
15 1 4 12 dvhlmod φULMod
16 eqid BaseK=BaseK
17 eqid LTrnKW=LTrnKW
18 eqid 0U=0U
19 1 16 17 4 5 18 2 12 dvheveccl φEV0U
20 19 eldifad φEV
21 5 14 11 lspsncl ULModEVNELSubSpU
22 15 20 21 syl2anc φNELSubSpU
23 20 snssd φEV
24 1 4 3 5 11 12 23 dochocsp φONE=OE
25 24 fveq2d φOONE=OOE
26 1 4 3 5 11 12 20 dochocsn φOOE=NE
27 25 26 eqtrd φOONE=NE
28 1 3 4 5 14 10 12 22 27 dochexmid φNE˙ONE=V
29 24 oveq2d φNE˙ONE=NE˙OE
30 28 29 eqtr3d φV=NE˙OE
31 13 30 eleqtrd φXNE˙OE
32 14 lsssssubg ULModLSubSpUSubGrpU
33 15 32 syl φLSubSpUSubGrpU
34 33 22 sseldd φNESubGrpU
35 1 4 5 14 3 dochlss KHLWHEVOELSubSpU
36 12 23 35 syl2anc φOELSubSpU
37 33 36 sseldd φOESubGrpU
38 6 10 lsmelval NESubGrpUOESubGrpUXNE˙OEaNEuOEX=a+˙u
39 34 37 38 syl2anc φXNE˙OEaNEuOEX=a+˙u
40 31 39 mpbid φaNEuOEX=a+˙u
41 rexcom aNEuOEX=a+˙uuOEaNEX=a+˙u
42 df-rex aNEX=a+˙uaaNEX=a+˙u
43 8 9 5 7 11 lspsnel ULModEVaNEkBa=k·˙E
44 15 20 43 syl2anc φaNEkBa=k·˙E
45 44 anbi1d φaNEX=a+˙ukBa=k·˙EX=a+˙u
46 r19.41v kBa=k·˙EX=a+˙ukBa=k·˙EX=a+˙u
47 45 46 bitr4di φaNEX=a+˙ukBa=k·˙EX=a+˙u
48 47 exbidv φaaNEX=a+˙uakBa=k·˙EX=a+˙u
49 rexcom4 kBaa=k·˙EX=a+˙uakBa=k·˙EX=a+˙u
50 ovex k·˙EV
51 oveq1 a=k·˙Ea+˙u=k·˙E+˙u
52 51 eqeq2d a=k·˙EX=a+˙uX=k·˙E+˙u
53 50 52 ceqsexv aa=k·˙EX=a+˙uX=k·˙E+˙u
54 53 rexbii kBaa=k·˙EX=a+˙ukBX=k·˙E+˙u
55 49 54 bitr3i akBa=k·˙EX=a+˙ukBX=k·˙E+˙u
56 48 55 bitrdi φaaNEX=a+˙ukBX=k·˙E+˙u
57 42 56 bitrid φaNEX=a+˙ukBX=k·˙E+˙u
58 57 rexbidv φuOEaNEX=a+˙uuOEkBX=k·˙E+˙u
59 41 58 bitrid φaNEuOEX=a+˙uuOEkBX=k·˙E+˙u
60 40 59 mpbid φuOEkBX=k·˙E+˙u