Metamath Proof Explorer


Theorem hgmapvvlem3

Description: Lemma for hgmapvv . Eliminate ( ( SD )C ) = .1. (Baer's f(h,k)=1). (Contributed by NM, 13-Jun-2015)

Ref Expression
Hypotheses hdmapglem6.h H=LHypK
hdmapglem6.e E=IBaseKILTrnKW
hdmapglem6.o O=ocHKW
hdmapglem6.u U=DVecHKW
hdmapglem6.v V=BaseU
hdmapglem6.q ·˙=U
hdmapglem6.r R=ScalarU
hdmapglem6.b B=BaseR
hdmapglem6.t ×˙=R
hdmapglem6.z 0˙=0R
hdmapglem6.i 1˙=1R
hdmapglem6.n N=invrR
hdmapglem6.s S=HDMapKW
hdmapglem6.g G=HGMapKW
hdmapglem6.k φKHLWH
hdmapglem6.x φXB0˙
Assertion hgmapvvlem3 φGGX=X

Proof

Step Hyp Ref Expression
1 hdmapglem6.h H=LHypK
2 hdmapglem6.e E=IBaseKILTrnKW
3 hdmapglem6.o O=ocHKW
4 hdmapglem6.u U=DVecHKW
5 hdmapglem6.v V=BaseU
6 hdmapglem6.q ·˙=U
7 hdmapglem6.r R=ScalarU
8 hdmapglem6.b B=BaseR
9 hdmapglem6.t ×˙=R
10 hdmapglem6.z 0˙=0R
11 hdmapglem6.i 1˙=1R
12 hdmapglem6.n N=invrR
13 hdmapglem6.s S=HDMapKW
14 hdmapglem6.g G=HGMapKW
15 hdmapglem6.k φKHLWH
16 hdmapglem6.x φXB0˙
17 eqid 0U=0U
18 eqid BaseK=BaseK
19 eqid LTrnKW=LTrnKW
20 1 18 19 4 5 17 2 15 dvheveccl φEV0U
21 20 eldifad φEV
22 1 3 4 5 17 15 21 dochsnnz φOE0U
23 21 snssd φEV
24 eqid LSubSpU=LSubSpU
25 1 4 5 24 3 dochlss KHLWHEVOELSubSpU
26 15 23 25 syl2anc φOELSubSpU
27 17 24 lssne0 OELSubSpUOE0UkOEk0U
28 26 27 syl φOE0UkOEk0U
29 22 28 mpbid φkOEk0U
30 eqid U=U
31 15 3ad2ant1 φkOEk0UKHLWH
32 1 4 5 3 dochssv KHLWHEVOEV
33 15 23 32 syl2anc φOEV
34 33 sselda φkOEkV
35 34 3adant3 φkOEk0UkV
36 simp3 φkOEk0Uk0U
37 eldifsn kV0UkVk0U
38 35 36 37 sylanbrc φkOEk0UkV0U
39 eqid NSkkUk=NSkkUk
40 1 4 5 30 17 7 11 12 13 31 38 39 hdmapip1 φkOEk0USkNSkkUk=1˙
41 simpl1 φkOEk0USkNSkkUk=1˙φ
42 41 15 syl φkOEk0USkNSkkUk=1˙KHLWH
43 41 16 syl φkOEk0USkNSkkUk=1˙XB0˙
44 1 4 15 dvhlmod φULMod
45 41 44 syl φkOEk0USkNSkkUk=1˙ULMod
46 41 26 syl φkOEk0USkNSkkUk=1˙OELSubSpU
47 1 4 15 dvhlvec φULVec
48 7 lvecdrng ULVecRDivRing
49 47 48 syl φRDivRing
50 41 49 syl φkOEk0USkNSkkUk=1˙RDivRing
51 35 adantr φkOEk0USkNSkkUk=1˙kV
52 1 4 5 7 8 13 42 51 51 hdmapipcl φkOEk0USkNSkkUk=1˙SkkB
53 15 adantr φkOEKHLWH
54 1 4 5 17 7 10 13 53 34 hdmapip0 φkOESkk=0˙k=0U
55 54 necon3bid φkOESkk0˙k0U
56 55 biimp3ar φkOEk0USkk0˙
57 56 adantr φkOEk0USkNSkkUk=1˙Skk0˙
58 8 10 12 drnginvrcl RDivRingSkkBSkk0˙NSkkB
59 50 52 57 58 syl3anc φkOEk0USkNSkkUk=1˙NSkkB
60 simpl2 φkOEk0USkNSkkUk=1˙kOE
61 7 30 8 24 lssvscl ULModOELSubSpUNSkkBkOENSkkUkOE
62 45 46 59 60 61 syl22anc φkOEk0USkNSkkUk=1˙NSkkUkOE
63 simpr φkOEk0USkNSkkUk=1˙SkNSkkUk=1˙
64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 42 43 62 60 63 hgmapvvlem2 φkOEk0USkNSkkUk=1˙GGX=X
65 40 64 mpdan φkOEk0UGGX=X
66 65 rexlimdv3a φkOEk0UGGX=X
67 29 66 mpd φGGX=X