Metamath Proof Explorer


Theorem hgmapvvlem3

Description: Lemma for hgmapvv . Eliminate ( ( SD )C ) = .1. (Baer's f(h,k)=1). (Contributed by NM, 13-Jun-2015)

Ref Expression
Hypotheses hdmapglem6.h H = LHyp K
hdmapglem6.e E = I Base K I LTrn K W
hdmapglem6.o O = ocH K W
hdmapglem6.u U = DVecH K W
hdmapglem6.v V = Base U
hdmapglem6.q · ˙ = U
hdmapglem6.r R = Scalar U
hdmapglem6.b B = Base R
hdmapglem6.t × ˙ = R
hdmapglem6.z 0 ˙ = 0 R
hdmapglem6.i 1 ˙ = 1 R
hdmapglem6.n N = inv r R
hdmapglem6.s S = HDMap K W
hdmapglem6.g G = HGMap K W
hdmapglem6.k φ K HL W H
hdmapglem6.x φ X B 0 ˙
Assertion hgmapvvlem3 φ G G X = X

Proof

Step Hyp Ref Expression
1 hdmapglem6.h H = LHyp K
2 hdmapglem6.e E = I Base K I LTrn K W
3 hdmapglem6.o O = ocH K W
4 hdmapglem6.u U = DVecH K W
5 hdmapglem6.v V = Base U
6 hdmapglem6.q · ˙ = U
7 hdmapglem6.r R = Scalar U
8 hdmapglem6.b B = Base R
9 hdmapglem6.t × ˙ = R
10 hdmapglem6.z 0 ˙ = 0 R
11 hdmapglem6.i 1 ˙ = 1 R
12 hdmapglem6.n N = inv r R
13 hdmapglem6.s S = HDMap K W
14 hdmapglem6.g G = HGMap K W
15 hdmapglem6.k φ K HL W H
16 hdmapglem6.x φ X B 0 ˙
17 eqid 0 U = 0 U
18 eqid Base K = Base K
19 eqid LTrn K W = LTrn K W
20 1 18 19 4 5 17 2 15 dvheveccl φ E V 0 U
21 20 eldifad φ E V
22 1 3 4 5 17 15 21 dochsnnz φ O E 0 U
23 21 snssd φ E V
24 eqid LSubSp U = LSubSp U
25 1 4 5 24 3 dochlss K HL W H E V O E LSubSp U
26 15 23 25 syl2anc φ O E LSubSp U
27 17 24 lssne0 O E LSubSp U O E 0 U k O E k 0 U
28 26 27 syl φ O E 0 U k O E k 0 U
29 22 28 mpbid φ k O E k 0 U
30 eqid U = U
31 15 3ad2ant1 φ k O E k 0 U K HL W H
32 1 4 5 3 dochssv K HL W H E V O E V
33 15 23 32 syl2anc φ O E V
34 33 sselda φ k O E k V
35 34 3adant3 φ k O E k 0 U k V
36 simp3 φ k O E k 0 U k 0 U
37 eldifsn k V 0 U k V k 0 U
38 35 36 37 sylanbrc φ k O E k 0 U k V 0 U
39 eqid N S k k U k = N S k k U k
40 1 4 5 30 17 7 11 12 13 31 38 39 hdmapip1 φ k O E k 0 U S k N S k k U k = 1 ˙
41 simpl1 φ k O E k 0 U S k N S k k U k = 1 ˙ φ
42 41 15 syl φ k O E k 0 U S k N S k k U k = 1 ˙ K HL W H
43 41 16 syl φ k O E k 0 U S k N S k k U k = 1 ˙ X B 0 ˙
44 1 4 15 dvhlmod φ U LMod
45 41 44 syl φ k O E k 0 U S k N S k k U k = 1 ˙ U LMod
46 41 26 syl φ k O E k 0 U S k N S k k U k = 1 ˙ O E LSubSp U
47 1 4 15 dvhlvec φ U LVec
48 7 lvecdrng U LVec R DivRing
49 47 48 syl φ R DivRing
50 41 49 syl φ k O E k 0 U S k N S k k U k = 1 ˙ R DivRing
51 35 adantr φ k O E k 0 U S k N S k k U k = 1 ˙ k V
52 1 4 5 7 8 13 42 51 51 hdmapipcl φ k O E k 0 U S k N S k k U k = 1 ˙ S k k B
53 15 adantr φ k O E K HL W H
54 1 4 5 17 7 10 13 53 34 hdmapip0 φ k O E S k k = 0 ˙ k = 0 U
55 54 necon3bid φ k O E S k k 0 ˙ k 0 U
56 55 biimp3ar φ k O E k 0 U S k k 0 ˙
57 56 adantr φ k O E k 0 U S k N S k k U k = 1 ˙ S k k 0 ˙
58 8 10 12 drnginvrcl R DivRing S k k B S k k 0 ˙ N S k k B
59 50 52 57 58 syl3anc φ k O E k 0 U S k N S k k U k = 1 ˙ N S k k B
60 simpl2 φ k O E k 0 U S k N S k k U k = 1 ˙ k O E
61 7 30 8 24 lssvscl U LMod O E LSubSp U N S k k B k O E N S k k U k O E
62 45 46 59 60 61 syl22anc φ k O E k 0 U S k N S k k U k = 1 ˙ N S k k U k O E
63 simpr φ k O E k 0 U S k N S k k U k = 1 ˙ S k N S k k U k = 1 ˙
64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 42 43 62 60 63 hgmapvvlem2 φ k O E k 0 U S k N S k k U k = 1 ˙ G G X = X
65 40 64 mpdan φ k O E k 0 U G G X = X
66 65 rexlimdv3a φ k O E k 0 U G G X = X
67 29 66 mpd φ G G X = X