Description: Lemma for hgmapvv . Eliminate ( ( SD )C ) = .1. (Baer's f(h,k)=1). (Contributed by NM, 13-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmapglem6.h | |
|
hdmapglem6.e | |
||
hdmapglem6.o | |
||
hdmapglem6.u | |
||
hdmapglem6.v | |
||
hdmapglem6.q | |
||
hdmapglem6.r | |
||
hdmapglem6.b | |
||
hdmapglem6.t | |
||
hdmapglem6.z | |
||
hdmapglem6.i | |
||
hdmapglem6.n | |
||
hdmapglem6.s | |
||
hdmapglem6.g | |
||
hdmapglem6.k | |
||
hdmapglem6.x | |
||
Assertion | hgmapvvlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapglem6.h | |
|
2 | hdmapglem6.e | |
|
3 | hdmapglem6.o | |
|
4 | hdmapglem6.u | |
|
5 | hdmapglem6.v | |
|
6 | hdmapglem6.q | |
|
7 | hdmapglem6.r | |
|
8 | hdmapglem6.b | |
|
9 | hdmapglem6.t | |
|
10 | hdmapglem6.z | |
|
11 | hdmapglem6.i | |
|
12 | hdmapglem6.n | |
|
13 | hdmapglem6.s | |
|
14 | hdmapglem6.g | |
|
15 | hdmapglem6.k | |
|
16 | hdmapglem6.x | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | 1 18 19 4 5 17 2 15 | dvheveccl | |
21 | 20 | eldifad | |
22 | 1 3 4 5 17 15 21 | dochsnnz | |
23 | 21 | snssd | |
24 | eqid | |
|
25 | 1 4 5 24 3 | dochlss | |
26 | 15 23 25 | syl2anc | |
27 | 17 24 | lssne0 | |
28 | 26 27 | syl | |
29 | 22 28 | mpbid | |
30 | eqid | |
|
31 | 15 | 3ad2ant1 | |
32 | 1 4 5 3 | dochssv | |
33 | 15 23 32 | syl2anc | |
34 | 33 | sselda | |
35 | 34 | 3adant3 | |
36 | simp3 | |
|
37 | eldifsn | |
|
38 | 35 36 37 | sylanbrc | |
39 | eqid | |
|
40 | 1 4 5 30 17 7 11 12 13 31 38 39 | hdmapip1 | |
41 | simpl1 | |
|
42 | 41 15 | syl | |
43 | 41 16 | syl | |
44 | 1 4 15 | dvhlmod | |
45 | 41 44 | syl | |
46 | 41 26 | syl | |
47 | 1 4 15 | dvhlvec | |
48 | 7 | lvecdrng | |
49 | 47 48 | syl | |
50 | 41 49 | syl | |
51 | 35 | adantr | |
52 | 1 4 5 7 8 13 42 51 51 | hdmapipcl | |
53 | 15 | adantr | |
54 | 1 4 5 17 7 10 13 53 34 | hdmapip0 | |
55 | 54 | necon3bid | |
56 | 55 | biimp3ar | |
57 | 56 | adantr | |
58 | 8 10 12 | drnginvrcl | |
59 | 50 52 57 58 | syl3anc | |
60 | simpl2 | |
|
61 | 7 30 8 24 | lssvscl | |
62 | 45 46 59 60 61 | syl22anc | |
63 | simpr | |
|
64 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 42 43 62 60 63 | hgmapvvlem2 | |
65 | 40 64 | mpdan | |
66 | 65 | rexlimdv3a | |
67 | 29 66 | mpd | |