Metamath Proof Explorer


Theorem hhssabloilem

Description: Lemma for hhssabloi . Formerly part of proof for hhssabloi which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008) (Revised by Mario Carneiro, 23-Dec-2013) (Revised by AV, 27-Aug-2021) (New usage is discouraged.)

Ref Expression
Hypothesis hhssabl.1 HS
Assertion hhssabloilem +GrpOp+H×HGrpOp+H×H+

Proof

Step Hyp Ref Expression
1 hhssabl.1 HS
2 hilablo +AbelOp
3 ablogrpo +AbelOp+GrpOp
4 2 3 ax-mp +GrpOp
5 1 elexi HV
6 eqid ran+=ran+
7 6 grpofo +GrpOp+:ran+×ran+ontoran+
8 fof +:ran+×ran+ontoran++:ran+×ran+ran+
9 4 7 8 mp2b +:ran+×ran+ran+
10 1 shssii H
11 df-hba =BaseSet+norm
12 eqid +norm=+norm
13 12 hhva +=+v+norm
14 11 13 bafval =ran+
15 10 14 sseqtri Hran+
16 xpss12 Hran+Hran+H×Hran+×ran+
17 15 15 16 mp2an H×Hran+×ran+
18 fssres +:ran+×ran+ran+H×Hran+×ran++H×H:H×Hran+
19 9 17 18 mp2an +H×H:H×Hran+
20 ffn +H×H:H×Hran++H×HFnH×H
21 19 20 ax-mp +H×HFnH×H
22 ovres xHyHx+H×Hy=x+y
23 shaddcl HSxHyHx+yH
24 1 23 mp3an1 xHyHx+yH
25 22 24 eqeltrd xHyHx+H×HyH
26 25 rgen2 xHyHx+H×HyH
27 ffnov +H×H:H×HH+H×HFnH×HxHyHx+H×HyH
28 21 26 27 mpbir2an +H×H:H×HH
29 22 oveq1d xHyHx+H×Hy+z=x+y+z
30 29 3adant3 xHyHzHx+H×Hy+z=x+y+z
31 ovres x+H×HyHzHx+H×Hy+H×Hz=x+H×Hy+z
32 25 31 stoic3 xHyHzHx+H×Hy+H×Hz=x+H×Hy+z
33 ovres yHzHy+H×Hz=y+z
34 33 oveq2d yHzHx+y+H×Hz=x+y+z
35 34 3adant1 xHyHzHx+y+H×Hz=x+y+z
36 28 fovcl yHzHy+H×HzH
37 ovres xHy+H×HzHx+H×Hy+H×Hz=x+y+H×Hz
38 36 37 sylan2 xHyHzHx+H×Hy+H×Hz=x+y+H×Hz
39 38 3impb xHyHzHx+H×Hy+H×Hz=x+y+H×Hz
40 15 sseli xHxran+
41 15 sseli yHyran+
42 15 sseli zHzran+
43 6 grpoass +GrpOpxran+yran+zran+x+y+z=x+y+z
44 4 43 mpan xran+yran+zran+x+y+z=x+y+z
45 40 41 42 44 syl3an xHyHzHx+y+z=x+y+z
46 35 39 45 3eqtr4d xHyHzHx+H×Hy+H×Hz=x+y+z
47 30 32 46 3eqtr4d xHyHzHx+H×Hy+H×Hz=x+H×Hy+H×Hz
48 hilid GId+=0
49 sh0 HS0H
50 1 49 ax-mp 0H
51 48 50 eqeltri GId+H
52 ovres GId+HxHGId++H×Hx=GId++x
53 51 52 mpan xHGId++H×Hx=GId++x
54 eqid GId+=GId+
55 6 54 grpolid +GrpOpxran+GId++x=x
56 4 40 55 sylancr xHGId++x=x
57 53 56 eqtrd xHGId++H×Hx=x
58 12 hhnv +normNrmCVec
59 12 hhsm =𝑠OLD+norm
60 eqid 2nd1×V-1=2nd1×V-1
61 13 59 60 nvinvfval +normNrmCVec2nd1×V-1=inv+
62 58 61 ax-mp 2nd1×V-1=inv+
63 62 eqcomi inv+=2nd1×V-1
64 63 fveq1i inv+x=2nd1×V-1x
65 ax-hfvmul :×
66 ffn :×Fn×
67 65 66 ax-mp Fn×
68 neg1cn 1
69 60 curry1val Fn×12nd1×V-1x=-1x
70 67 68 69 mp2an 2nd1×V-1x=-1x
71 shmulcl HS1xH-1xH
72 1 68 71 mp3an12 xH-1xH
73 70 72 eqeltrid xH2nd1×V-1xH
74 64 73 eqeltrid xHinv+xH
75 ovres inv+xHxHinv+x+H×Hx=inv+x+x
76 74 75 mpancom xHinv+x+H×Hx=inv+x+x
77 eqid inv+=inv+
78 6 54 77 grpolinv +GrpOpxran+inv+x+x=GId+
79 4 40 78 sylancr xHinv+x+x=GId+
80 76 79 eqtrd xHinv+x+H×Hx=GId+
81 5 28 47 51 57 74 80 isgrpoi +H×HGrpOp
82 resss +H×H+
83 4 81 82 3pm3.2i +GrpOp+H×HGrpOp+H×H+