Metamath Proof Explorer


Theorem icchmeo

Description: The natural bijection from [ 0 , 1 ] to an arbitrary nontrivial closed interval [ A , B ] is a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypotheses icchmeo.j J=TopOpenfld
icchmeo.f F=x01xB+1xA
Assertion icchmeo ABA<BFIIHomeoJ𝑡AB

Proof

Step Hyp Ref Expression
1 icchmeo.j J=TopOpenfld
2 icchmeo.f F=x01xB+1xA
3 iitopon IITopOn01
4 3 a1i ABA<BIITopOn01
5 1 dfii3 II=J𝑡01
6 5 oveq2i IICnII=IICnJ𝑡01
7 1 cnfldtop JTop
8 cnrest2r JTopIICnJ𝑡01IICnJ
9 7 8 ax-mp IICnJ𝑡01IICnJ
10 6 9 eqsstri IICnIIIICnJ
11 4 cnmptid ABA<Bx01xIICnII
12 10 11 sselid ABA<Bx01xIICnJ
13 1 cnfldtopon JTopOn
14 13 a1i ABA<BJTopOn
15 simp2 ABA<BB
16 15 recnd ABA<BB
17 4 14 16 cnmptc ABA<Bx01BIICnJ
18 1 mulcn ×J×tJCnJ
19 18 a1i ABA<B×J×tJCnJ
20 4 12 17 19 cnmpt12f ABA<Bx01xBIICnJ
21 1cnd ABA<B1
22 4 14 21 cnmptc ABA<Bx011IICnJ
23 1 subcn J×tJCnJ
24 23 a1i ABA<BJ×tJCnJ
25 4 22 12 24 cnmpt12f ABA<Bx011xIICnJ
26 simp1 ABA<BA
27 26 recnd ABA<BA
28 4 14 27 cnmptc ABA<Bx01AIICnJ
29 4 25 28 19 cnmpt12f ABA<Bx011xAIICnJ
30 1 addcn +J×tJCnJ
31 30 a1i ABA<B+J×tJCnJ
32 4 20 29 31 cnmpt12f ABA<Bx01xB+1xAIICnJ
33 2 32 eqeltrid ABA<BFIICnJ
34 2 iccf1o ABA<BF:011-1 ontoABF-1=yAByABA
35 34 simpld ABA<BF:011-1 ontoAB
36 f1of F:011-1 ontoABF:01AB
37 frn F:01ABranFAB
38 35 36 37 3syl ABA<BranFAB
39 iccssre ABAB
40 39 3adant3 ABA<BAB
41 ax-resscn
42 40 41 sstrdi ABA<BAB
43 cnrest2 JTopOnranFABABFIICnJFIICnJ𝑡AB
44 13 38 42 43 mp3an2i ABA<BFIICnJFIICnJ𝑡AB
45 33 44 mpbid ABA<BFIICnJ𝑡AB
46 34 simprd ABA<BF-1=yAByABA
47 resttopon JTopOnABJ𝑡ABTopOnAB
48 13 42 47 sylancr ABA<BJ𝑡ABTopOnAB
49 cnrest2r JTopJ𝑡ABCnJ𝑡ABJ𝑡ABCnJ
50 7 49 ax-mp J𝑡ABCnJ𝑡ABJ𝑡ABCnJ
51 48 cnmptid ABA<ByAByJ𝑡ABCnJ𝑡AB
52 50 51 sselid ABA<ByAByJ𝑡ABCnJ
53 48 14 27 cnmptc ABA<ByABAJ𝑡ABCnJ
54 48 52 53 24 cnmpt12f ABA<ByAByAJ𝑡ABCnJ
55 difrp ABA<BBA+
56 55 biimp3a ABA<BBA+
57 56 rpcnd ABA<BBA
58 56 rpne0d ABA<BBA0
59 1 divccn BABA0xxBAJCnJ
60 57 58 59 syl2anc ABA<BxxBAJCnJ
61 oveq1 x=yAxBA=yABA
62 48 54 14 60 61 cnmpt11 ABA<ByAByABAJ𝑡ABCnJ
63 46 62 eqeltrd ABA<BF-1J𝑡ABCnJ
64 dfdm4 domF=ranF-1
65 64 eqimss2i ranF-1domF
66 f1odm F:011-1 ontoABdomF=01
67 35 66 syl ABA<BdomF=01
68 65 67 sseqtrid ABA<BranF-101
69 unitssre 01
70 69 a1i ABA<B01
71 70 41 sstrdi ABA<B01
72 cnrest2 JTopOnranF-10101F-1J𝑡ABCnJF-1J𝑡ABCnJ𝑡01
73 13 68 71 72 mp3an2i ABA<BF-1J𝑡ABCnJF-1J𝑡ABCnJ𝑡01
74 63 73 mpbid ABA<BF-1J𝑡ABCnJ𝑡01
75 5 oveq2i J𝑡ABCnII=J𝑡ABCnJ𝑡01
76 74 75 eleqtrrdi ABA<BF-1J𝑡ABCnII
77 ishmeo FIIHomeoJ𝑡ABFIICnJ𝑡ABF-1J𝑡ABCnII
78 45 76 77 sylanbrc ABA<BFIIHomeoJ𝑡AB