Metamath Proof Explorer


Theorem infleinflem2

Description: Lemma for infleinf , when inf ( B , RR* , < ) = -oo . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses infleinflem2.a φA*
infleinflem2.b φB*
infleinflem2.r φR
infleinflem2.x φXB
infleinflem2.t φX<R2
infleinflem2.z φZA
infleinflem2.l φZX+𝑒1
Assertion infleinflem2 φZ<R

Proof

Step Hyp Ref Expression
1 infleinflem2.a φA*
2 infleinflem2.b φB*
3 infleinflem2.r φR
4 infleinflem2.x φXB
5 infleinflem2.t φX<R2
6 infleinflem2.z φZA
7 infleinflem2.l φZX+𝑒1
8 3 adantr φZ=−∞R
9 simpr φZ=−∞Z=−∞
10 simpr RZ=−∞Z=−∞
11 mnflt R−∞<R
12 11 adantr RZ=−∞−∞<R
13 10 12 eqbrtrd RZ=−∞Z<R
14 8 9 13 syl2anc φZ=−∞Z<R
15 simpl φ¬Z=−∞φ
16 neqne ¬Z=−∞Z−∞
17 16 adantl φ¬Z=−∞Z−∞
18 3 adantr φZ−∞R
19 id φφ
20 2 sselda φXBX*
21 19 4 20 syl2anc φX*
22 21 adantr φZ−∞X*
23 1 sselda φZAZ*
24 19 6 23 syl2anc φZ*
25 24 adantr φZ−∞Z*
26 simpr φZ−∞Z−∞
27 pnfxr +∞*
28 27 a1i φ+∞*
29 peano2rem RR1
30 29 rexrd RR1*
31 3 30 syl φR1*
32 2 4 sseldd φX*
33 id X*X*
34 1xr 1*
35 34 a1i X*1*
36 33 35 xaddcld X*X+𝑒1*
37 32 36 syl φX+𝑒1*
38 oveq1 X=−∞X+𝑒1=−∞+𝑒1
39 1re 1
40 renepnf 11+∞
41 39 40 ax-mp 1+∞
42 xaddmnf2 1*1+∞−∞+𝑒1=−∞
43 34 41 42 mp2an −∞+𝑒1=−∞
44 43 a1i X=−∞−∞+𝑒1=−∞
45 38 44 eqtrd X=−∞X+𝑒1=−∞
46 45 adantl RX=−∞X+𝑒1=−∞
47 29 mnfltd R−∞<R1
48 47 adantr RX=−∞−∞<R1
49 46 48 eqbrtrd RX=−∞X+𝑒1<R1
50 49 adantlr RX*X=−∞X+𝑒1<R1
51 50 3adantl3 RX*X<R2X=−∞X+𝑒1<R1
52 simpl RX*X<R2¬X=−∞RX*X<R2
53 simpl2 RX*X<R2¬X=−∞X*
54 neqne ¬X=−∞X−∞
55 54 adantl RX*X<R2¬X=−∞X−∞
56 simp2 RX*X<R2X*
57 27 a1i RX*X<R2+∞*
58 id RR
59 2re 2
60 59 a1i R2
61 58 60 resubcld RR2
62 61 rexrd RR2*
63 62 3ad2ant1 RX*X<R2R2*
64 simp3 RX*X<R2X<R2
65 61 ltpnfd RR2<+∞
66 65 3ad2ant1 RX*X<R2R2<+∞
67 56 63 57 64 66 xrlttrd RX*X<R2X<+∞
68 56 57 67 xrltned RX*X<R2X+∞
69 68 adantr RX*X<R2¬X=−∞X+∞
70 53 55 69 xrred RX*X<R2¬X=−∞X
71 id XX
72 71 ad2antlr RXX<R2X
73 61 ad2antrr RXX<R2R2
74 1red X1
75 72 74 syl RXX<R21
76 simpr RXX<R2X<R2
77 72 73 75 76 ltadd1dd RXX<R2X+1<R-2+1
78 recn RR
79 id RR
80 2cnd R2
81 1cnd R1
82 79 80 81 subsubd RR21=R-2+1
83 2m1e1 21=1
84 83 oveq2i R21=R1
85 84 a1i RR21=R1
86 82 85 eqtr3d RR-2+1=R1
87 78 86 syl RR-2+1=R1
88 87 ad2antrr RXX<R2R-2+1=R1
89 77 88 breqtrd RXX<R2X+1<R1
90 71 74 rexaddd XX+𝑒1=X+1
91 90 breq1d XX+𝑒1<R1X+1<R1
92 91 ad2antlr RXX<R2X+𝑒1<R1X+1<R1
93 89 92 mpbird RXX<R2X+𝑒1<R1
94 93 an32s RX<R2XX+𝑒1<R1
95 94 3adantl2 RX*X<R2XX+𝑒1<R1
96 52 70 95 syl2anc RX*X<R2¬X=−∞X+𝑒1<R1
97 51 96 pm2.61dan RX*X<R2X+𝑒1<R1
98 3 32 5 97 syl3anc φX+𝑒1<R1
99 24 37 31 7 98 xrlelttrd φZ<R1
100 29 ltpnfd RR1<+∞
101 3 100 syl φR1<+∞
102 24 31 28 99 101 xrlttrd φZ<+∞
103 24 28 102 xrltned φZ+∞
104 103 adantr φZ−∞Z+∞
105 25 26 104 xrred φZ−∞Z
106 7 adantr φZ−∞ZX+𝑒1
107 simpl3 ZX*ZX+𝑒1X=−∞ZX+𝑒1
108 45 adantl ZX=−∞X+𝑒1=−∞
109 mnflt Z−∞<Z
110 109 adantr ZX=−∞−∞<Z
111 108 110 eqbrtrd ZX=−∞X+𝑒1<Z
112 mnfxr −∞*
113 108 112 eqeltrdi ZX=−∞X+𝑒1*
114 rexr ZZ*
115 114 adantr ZX=−∞Z*
116 113 115 xrltnled ZX=−∞X+𝑒1<Z¬ZX+𝑒1
117 111 116 mpbid ZX=−∞¬ZX+𝑒1
118 117 3ad2antl1 ZX*ZX+𝑒1X=−∞¬ZX+𝑒1
119 107 118 pm2.65da ZX*ZX+𝑒1¬X=−∞
120 119 neqned ZX*ZX+𝑒1X−∞
121 105 22 106 120 syl3anc φZ−∞X−∞
122 3 21 5 68 syl3anc φX+∞
123 122 adantr φZ−∞X+∞
124 22 121 123 xrred φZ−∞X
125 5 adantr φZ−∞X<R2
126 18 124 125 jca31 φZ−∞RXX<R2
127 simplr RXX<R2ZZX+𝑒1Z
128 simp-4r RXX<R2ZZX+𝑒1X
129 71 74 readdcld XX+1
130 90 129 eqeltrd XX+𝑒1
131 128 130 syl RXX<R2ZZX+𝑒1X+𝑒1
132 58 ad4antr RXX<R2ZZX+𝑒1R
133 simpr RXX<R2ZZX+𝑒1ZX+𝑒1
134 130 ad3antlr RXX<R2ZX+𝑒1
135 29 ad3antrrr RXX<R2ZR1
136 58 ad3antrrr RXX<R2ZR
137 93 adantr RXX<R2ZX+𝑒1<R1
138 136 ltm1d RXX<R2ZR1<R
139 134 135 136 137 138 lttrd RXX<R2ZX+𝑒1<R
140 139 adantr RXX<R2ZZX+𝑒1X+𝑒1<R
141 127 131 132 133 140 lelttrd RXX<R2ZZX+𝑒1Z<R
142 126 105 106 141 syl21anc φZ−∞Z<R
143 15 17 142 syl2anc φ¬Z=−∞Z<R
144 14 143 pm2.61dan φZ<R