Metamath Proof Explorer


Theorem infxr

Description: The infimum of a set of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses infxr.x xφ
infxr.y yφ
infxr.a φA*
infxr.b φB*
infxr.n φxA¬x<B
infxr.e φxB<xyAy<x
Assertion infxr φsupA*<=B

Proof

Step Hyp Ref Expression
1 infxr.x xφ
2 infxr.y yφ
3 infxr.a φA*
4 infxr.b φB*
5 infxr.n φxA¬x<B
6 infxr.e φxB<xyAy<x
7 6 r19.21bi φxB<xyAy<x
8 7 adantlr φx*xB<xyAy<x
9 simplll φx*¬xB<xφ
10 simpllr φx*¬xB<xx*
11 simplr φx*¬xB<x¬x
12 mnfxr −∞*
13 12 a1i φx*B<x−∞*
14 simplr φx*B<xx*
15 4 ad2antrr φx*B<xB*
16 mnfle B*−∞B
17 4 16 syl φ−∞B
18 17 ad2antrr φx*B<x−∞B
19 simpr φx*B<xB<x
20 13 15 14 18 19 xrlelttrd φx*B<x−∞<x
21 13 14 20 xrgtned φx*B<xx−∞
22 21 adantlr φx*¬xB<xx−∞
23 10 11 22 xrnmnfpnf φx*¬xB<xx=+∞
24 simpr φx*¬xB<xB<x
25 simpl φB=−∞φ
26 id B=−∞B=−∞
27 1re 1
28 mnflt 1−∞<1
29 27 28 ax-mp −∞<1
30 26 29 eqbrtrdi B=−∞B<1
31 30 adantl φB=−∞B<1
32 1red φ1
33 breq2 x=1B<xB<1
34 breq2 x=1y<xy<1
35 34 rexbidv x=1yAy<xyAy<1
36 33 35 imbi12d x=1B<xyAy<xB<1yAy<1
37 36 rspcva 1xB<xyAy<xB<1yAy<1
38 32 6 37 syl2anc φB<1yAy<1
39 25 31 38 sylc φB=−∞yAy<1
40 39 adantlr φx=+∞B=−∞yAy<1
41 nfv yx=+∞
42 2 41 nfan yφx=+∞
43 3 sselda φyAy*
44 43 ad4ant13 φx=+∞yAy<1y*
45 1xr 1*
46 45 a1i φx=+∞yAy<11*
47 id x=+∞x=+∞
48 pnfxr +∞*
49 47 48 eqeltrdi x=+∞x*
50 49 adantl φx=+∞x*
51 50 ad2antrr φx=+∞yAy<1x*
52 simpr φx=+∞yAy<1y<1
53 ltpnf 11<+∞
54 27 53 ax-mp 1<+∞
55 54 a1i x=+∞1<+∞
56 47 eqcomd x=+∞+∞=x
57 55 56 breqtrd x=+∞1<x
58 57 adantl φx=+∞1<x
59 58 ad2antrr φx=+∞yAy<11<x
60 44 46 51 52 59 xrlttrd φx=+∞yAy<1y<x
61 60 ex φx=+∞yAy<1y<x
62 61 ex φx=+∞yAy<1y<x
63 42 62 reximdai φx=+∞yAy<1yAy<x
64 63 adantr φx=+∞B=−∞yAy<1yAy<x
65 40 64 mpd φx=+∞B=−∞yAy<x
66 65 3adantl3 φx=+∞B<xB=−∞yAy<x
67 4 adantr φ¬B=−∞B*
68 67 3ad2antl1 φx=+∞B<x¬B=−∞B*
69 26 necon3bi ¬B=−∞B−∞
70 69 adantl φx=+∞B<x¬B=−∞B−∞
71 48 a1i φx=+∞B<x¬B=−∞+∞*
72 simpr x=+∞B<xB<x
73 simpl x=+∞B<xx=+∞
74 72 73 breqtrd x=+∞B<xB<+∞
75 74 3adant1 φx=+∞B<xB<+∞
76 75 adantr φx=+∞B<x¬B=−∞B<+∞
77 68 71 76 xrltned φx=+∞B<x¬B=−∞B+∞
78 68 70 77 xrred φx=+∞B<x¬B=−∞B
79 27 a1i φx=+∞B<x¬B=−∞1
80 78 79 readdcld φx=+∞B<x¬B=−∞B+1
81 6 adantr φ¬B=−∞xB<xyAy<x
82 81 3ad2antl1 φx=+∞B<x¬B=−∞xB<xyAy<x
83 80 82 jca φx=+∞B<x¬B=−∞B+1xB<xyAy<x
84 78 ltp1d φx=+∞B<x¬B=−∞B<B+1
85 breq2 x=B+1B<xB<B+1
86 breq2 x=B+1y<xy<B+1
87 86 rexbidv x=B+1yAy<xyAy<B+1
88 85 87 imbi12d x=B+1B<xyAy<xB<B+1yAy<B+1
89 88 rspcva B+1xB<xyAy<xB<B+1yAy<B+1
90 83 84 89 sylc φx=+∞B<x¬B=−∞yAy<B+1
91 nfv yB<x
92 2 41 91 nf3an yφx=+∞B<x
93 nfv y¬B=−∞
94 92 93 nfan yφx=+∞B<x¬B=−∞
95 43 3ad2antl1 φx=+∞B<xyAy*
96 95 ad4ant13 φx=+∞B<x¬B=−∞yAy<B+1y*
97 80 adantr φx=+∞B<x¬B=−∞yAB+1
98 97 rexrd φx=+∞B<x¬B=−∞yAB+1*
99 98 adantr φx=+∞B<x¬B=−∞yAy<B+1B+1*
100 50 3adant3 φx=+∞B<xx*
101 100 ad3antrrr φx=+∞B<x¬B=−∞yAy<B+1x*
102 simpr φx=+∞B<x¬B=−∞yAy<B+1y<B+1
103 80 ltpnfd φx=+∞B<x¬B=−∞B+1<+∞
104 56 adantr x=+∞¬B=−∞+∞=x
105 104 3ad2antl2 φx=+∞B<x¬B=−∞+∞=x
106 103 105 breqtrd φx=+∞B<x¬B=−∞B+1<x
107 106 ad2antrr φx=+∞B<x¬B=−∞yAy<B+1B+1<x
108 96 99 101 102 107 xrlttrd φx=+∞B<x¬B=−∞yAy<B+1y<x
109 108 ex φx=+∞B<x¬B=−∞yAy<B+1y<x
110 109 ex φx=+∞B<x¬B=−∞yAy<B+1y<x
111 94 110 reximdai φx=+∞B<x¬B=−∞yAy<B+1yAy<x
112 90 111 mpd φx=+∞B<x¬B=−∞yAy<x
113 66 112 pm2.61dan φx=+∞B<xyAy<x
114 9 23 24 113 syl3anc φx*¬xB<xyAy<x
115 114 ex φx*¬xB<xyAy<x
116 8 115 pm2.61dan φx*B<xyAy<x
117 116 ex φx*B<xyAy<x
118 1 117 ralrimi φx*B<xyAy<x
119 xrltso <Or*
120 119 a1i <Or*
121 120 eqinf B*xA¬x<Bx*B<xyAy<xsupA*<=B
122 121 mptru B*xA¬x<Bx*B<xyAy<xsupA*<=B
123 4 5 118 122 syl3anc φsupA*<=B