Description: An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014) (Proof shortened by Mario Carneiro, 25-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ioombl1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr | |
|
2 | ioossre | |
|
3 | 2 | a1i | |
4 | elpwi | |
|
5 | simplrl | |
|
6 | simplrr | |
|
7 | simpr | |
|
8 | eqid | |
|
9 | 8 | ovolgelb | |
10 | 5 6 7 9 | syl3anc | |
11 | eqid | |
|
12 | simplll | |
|
13 | 5 | adantr | |
14 | 6 | adantr | |
15 | simplr | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | simprl | |
|
19 | elovolmlem | |
|
20 | 18 19 | sylib | |
21 | simprrl | |
|
22 | simprrr | |
|
23 | eqid | |
|
24 | eqid | |
|
25 | 2fveq3 | |
|
26 | 25 | breq1d | |
27 | 26 25 | ifbieq2d | |
28 | 2fveq3 | |
|
29 | 27 28 | breq12d | |
30 | 29 27 28 | ifbieq12d | |
31 | 30 28 | opeq12d | |
32 | 31 | cbvmptv | |
33 | 25 30 | opeq12d | |
34 | 33 | cbvmptv | |
35 | 11 12 13 14 15 8 16 17 20 21 22 23 24 32 34 | ioombl1lem4 | |
36 | 10 35 | rexlimddv | |
37 | 36 | ralrimiva | |
38 | inss1 | |
|
39 | ovolsscl | |
|
40 | 38 39 | mp3an1 | |
41 | 40 | adantl | |
42 | difss | |
|
43 | ovolsscl | |
|
44 | 42 43 | mp3an1 | |
45 | 44 | adantl | |
46 | 41 45 | readdcld | |
47 | simprr | |
|
48 | alrple | |
|
49 | 46 47 48 | syl2anc | |
50 | 37 49 | mpbird | |
51 | 50 | expr | |
52 | 4 51 | sylan2 | |
53 | 52 | ralrimiva | |
54 | ismbl2 | |
|
55 | 3 53 54 | sylanbrc | |
56 | oveq1 | |
|
57 | iooid | |
|
58 | 56 57 | eqtrdi | |
59 | 0mbl | |
|
60 | 58 59 | eqeltrdi | |
61 | oveq1 | |
|
62 | ioomax | |
|
63 | 61 62 | eqtrdi | |
64 | rembl | |
|
65 | 63 64 | eqeltrdi | |
66 | 55 60 65 | 3jaoi | |
67 | 1 66 | sylbi | |