Metamath Proof Explorer


Theorem ioombl1

Description: An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014) (Proof shortened by Mario Carneiro, 25-Mar-2015)

Ref Expression
Assertion ioombl1 A*A+∞domvol

Proof

Step Hyp Ref Expression
1 elxr A*AA=+∞A=−∞
2 ioossre A+∞
3 2 a1i AA+∞
4 elpwi x𝒫x
5 simplrl Axvol*xy+x
6 simplrr Axvol*xy+vol*x
7 simpr Axvol*xy+y+
8 eqid seq1+absf=seq1+absf
9 8 ovolgelb xvol*xy+f2xran.fsupranseq1+absf*<vol*x+y
10 5 6 7 9 syl3anc Axvol*xy+f2xran.fsupranseq1+absf*<vol*x+y
11 eqid A+∞=A+∞
12 simplll Axvol*xy+f2xran.fsupranseq1+absf*<vol*x+yA
13 5 adantr Axvol*xy+f2xran.fsupranseq1+absf*<vol*x+yx
14 6 adantr Axvol*xy+f2xran.fsupranseq1+absf*<vol*x+yvol*x
15 simplr Axvol*xy+f2xran.fsupranseq1+absf*<vol*x+yy+
16 eqid seq1+absmifif1stfmAA1stfm2ndfmif1stfmAA1stfm2ndfm2ndfm=seq1+absmifif1stfmAA1stfm2ndfmif1stfmAA1stfm2ndfm2ndfm
17 eqid seq1+absm1stfmifif1stfmAA1stfm2ndfmif1stfmAA1stfm2ndfm=seq1+absm1stfmifif1stfmAA1stfm2ndfmif1stfmAA1stfm2ndfm
18 simprl Axvol*xy+f2xran.fsupranseq1+absf*<vol*x+yf2
19 elovolmlem f2f:2
20 18 19 sylib Axvol*xy+f2xran.fsupranseq1+absf*<vol*x+yf:2
21 simprrl Axvol*xy+f2xran.fsupranseq1+absf*<vol*x+yxran.f
22 simprrr Axvol*xy+f2xran.fsupranseq1+absf*<vol*x+ysupranseq1+absf*<vol*x+y
23 eqid 1stfn=1stfn
24 eqid 2ndfn=2ndfn
25 2fveq3 m=n1stfm=1stfn
26 25 breq1d m=n1stfmA1stfnA
27 26 25 ifbieq2d m=nif1stfmAA1stfm=if1stfnAA1stfn
28 2fveq3 m=n2ndfm=2ndfn
29 27 28 breq12d m=nif1stfmAA1stfm2ndfmif1stfnAA1stfn2ndfn
30 29 27 28 ifbieq12d m=nifif1stfmAA1stfm2ndfmif1stfmAA1stfm2ndfm=ifif1stfnAA1stfn2ndfnif1stfnAA1stfn2ndfn
31 30 28 opeq12d m=nifif1stfmAA1stfm2ndfmif1stfmAA1stfm2ndfm2ndfm=ifif1stfnAA1stfn2ndfnif1stfnAA1stfn2ndfn2ndfn
32 31 cbvmptv mifif1stfmAA1stfm2ndfmif1stfmAA1stfm2ndfm2ndfm=nifif1stfnAA1stfn2ndfnif1stfnAA1stfn2ndfn2ndfn
33 25 30 opeq12d m=n1stfmifif1stfmAA1stfm2ndfmif1stfmAA1stfm2ndfm=1stfnifif1stfnAA1stfn2ndfnif1stfnAA1stfn2ndfn
34 33 cbvmptv m1stfmifif1stfmAA1stfm2ndfmif1stfmAA1stfm2ndfm=n1stfnifif1stfnAA1stfn2ndfnif1stfnAA1stfn2ndfn
35 11 12 13 14 15 8 16 17 20 21 22 23 24 32 34 ioombl1lem4 Axvol*xy+f2xran.fsupranseq1+absf*<vol*x+yvol*xA+∞+vol*xA+∞vol*x+y
36 10 35 rexlimddv Axvol*xy+vol*xA+∞+vol*xA+∞vol*x+y
37 36 ralrimiva Axvol*xy+vol*xA+∞+vol*xA+∞vol*x+y
38 inss1 xA+∞x
39 ovolsscl xA+∞xxvol*xvol*xA+∞
40 38 39 mp3an1 xvol*xvol*xA+∞
41 40 adantl Axvol*xvol*xA+∞
42 difss xA+∞x
43 ovolsscl xA+∞xxvol*xvol*xA+∞
44 42 43 mp3an1 xvol*xvol*xA+∞
45 44 adantl Axvol*xvol*xA+∞
46 41 45 readdcld Axvol*xvol*xA+∞+vol*xA+∞
47 simprr Axvol*xvol*x
48 alrple vol*xA+∞+vol*xA+∞vol*xvol*xA+∞+vol*xA+∞vol*xy+vol*xA+∞+vol*xA+∞vol*x+y
49 46 47 48 syl2anc Axvol*xvol*xA+∞+vol*xA+∞vol*xy+vol*xA+∞+vol*xA+∞vol*x+y
50 37 49 mpbird Axvol*xvol*xA+∞+vol*xA+∞vol*x
51 50 expr Axvol*xvol*xA+∞+vol*xA+∞vol*x
52 4 51 sylan2 Ax𝒫vol*xvol*xA+∞+vol*xA+∞vol*x
53 52 ralrimiva Ax𝒫vol*xvol*xA+∞+vol*xA+∞vol*x
54 ismbl2 A+∞domvolA+∞x𝒫vol*xvol*xA+∞+vol*xA+∞vol*x
55 3 53 54 sylanbrc AA+∞domvol
56 oveq1 A=+∞A+∞=+∞+∞
57 iooid +∞+∞=
58 56 57 eqtrdi A=+∞A+∞=
59 0mbl domvol
60 58 59 eqeltrdi A=+∞A+∞domvol
61 oveq1 A=−∞A+∞=−∞+∞
62 ioomax −∞+∞=
63 61 62 eqtrdi A=−∞A+∞=
64 rembl domvol
65 63 64 eqeltrdi A=−∞A+∞domvol
66 55 60 65 3jaoi AA=+∞A=−∞A+∞domvol
67 1 66 sylbi A*A+∞domvol