Metamath Proof Explorer


Theorem ioorrnopn

Description: The indexed product of open intervals is an open set in ( RR^X ) . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ioorrnopn.x φXFin
ioorrnopn.a φA:X
ioorrnopn.b φB:X
Assertion ioorrnopn φiXAiBiTopOpenmsup

Proof

Step Hyp Ref Expression
1 ioorrnopn.x φXFin
2 ioorrnopn.a φA:X
3 ioorrnopn.b φB:X
4 p0ex V
5 4 prid2
6 5 a1i X=
7 ixpeq1 X=iXAiBi=iAiBi
8 ixp0x iAiBi=
9 8 a1i X=iAiBi=
10 7 9 eqtrd X=iXAiBi=
11 2fveq3 X=TopOpenmsup=TopOpenmsup
12 rrxtopn0b TopOpenmsup=
13 12 a1i X=TopOpenmsup=
14 11 13 eqtrd X=TopOpenmsup=
15 10 14 eleq12d X=iXAiBiTopOpenmsup
16 6 15 mpbird X=iXAiBiTopOpenmsup
17 16 adantl φX=iXAiBiTopOpenmsup
18 neqne ¬X=X
19 18 adantl φ¬X=X
20 fveq2 i=jAi=Aj
21 fveq2 i=jBi=Bj
22 20 21 oveq12d i=jAiBi=AjBj
23 22 cbvixpv iXAiBi=jXAjBj
24 23 eleq2i fiXAiBifjXAjBj
25 24 biimpi fiXAiBifjXAjBj
26 25 adantl φXfiXAiBifjXAjBj
27 1 ad2antrr φXfiXAiBiXFin
28 24 27 sylan2br φXfjXAjBjXFin
29 simplr φXfiXAiBiX
30 24 29 sylan2br φXfjXAjBjX
31 2 ad2antrr φXfiXAiBiA:X
32 24 31 sylan2br φXfjXAjBjA:X
33 3 ad2antrr φXfiXAiBiB:X
34 24 33 sylan2br φXfjXAjBjB:X
35 simpr φXfiXAiBifiXAiBi
36 24 35 sylan2br φXfjXAjBjfiXAiBi
37 eqid raniXifBififiAiBififiAi=raniXifBififiAiBififiAi
38 fveq2 j=iBj=Bi
39 fveq2 j=ifj=fi
40 38 39 oveq12d j=iBjfj=Bifi
41 fveq2 j=iAj=Ai
42 39 41 oveq12d j=ifjAj=fiAi
43 40 42 breq12d j=iBjfjfjAjBififiAi
44 43 40 42 ifbieq12d j=iifBjfjfjAjBjfjfjAj=ifBififiAiBififiAi
45 44 cbvmptv jXifBjfjfjAjBjfjfjAj=iXifBififiAiBififiAi
46 45 rneqi ranjXifBjfjfjAjBjfjfjAj=raniXifBififiAiBififiAi
47 46 infeq1i supranjXifBjfjfjAjBjfjfjAj<=supraniXifBififiAiBififiAi<
48 eqid fballaX,bXkXakbk2supranjXifBjfjfjAjBjfjfjAj<=fballaX,bXkXakbk2supranjXifBjfjfjAjBjfjfjAj<
49 fveq1 a=gak=gk
50 49 oveq1d a=gakbk=gkbk
51 50 oveq1d a=gakbk2=gkbk2
52 51 sumeq2sdv a=gkXakbk2=kXgkbk2
53 52 fveq2d a=gkXakbk2=kXgkbk2
54 fveq1 b=hbk=hk
55 54 oveq2d b=hgkbk=gkhk
56 55 oveq1d b=hgkbk2=gkhk2
57 56 sumeq2sdv b=hkXgkbk2=kXgkhk2
58 57 fveq2d b=hkXgkbk2=kXgkhk2
59 53 58 cbvmpov aX,bXkXakbk2=gX,hXkXgkhk2
60 28 30 32 34 36 37 47 48 59 ioorrnopnlem φXfjXAjBjvTopOpenmsupfvviXAiBi
61 26 60 syldan φXfiXAiBivTopOpenmsupfvviXAiBi
62 61 ralrimiva φXfiXAiBivTopOpenmsupfvviXAiBi
63 eqid TopOpenmsup=TopOpenmsup
64 63 rrxtop XFinTopOpenmsupTop
65 1 64 syl φTopOpenmsupTop
66 65 adantr φXTopOpenmsupTop
67 eltop2 TopOpenmsupTopiXAiBiTopOpenmsupfiXAiBivTopOpenmsupfvviXAiBi
68 66 67 syl φXiXAiBiTopOpenmsupfiXAiBivTopOpenmsupfvviXAiBi
69 62 68 mpbird φXiXAiBiTopOpenmsup
70 19 69 syldan φ¬X=iXAiBiTopOpenmsup
71 17 70 pm2.61dan φiXAiBiTopOpenmsup