Description: The indexed product of open intervals is an open set in ( RR^X ) . (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ioorrnopn.x | |
|
ioorrnopn.a | |
||
ioorrnopn.b | |
||
Assertion | ioorrnopn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioorrnopn.x | |
|
2 | ioorrnopn.a | |
|
3 | ioorrnopn.b | |
|
4 | p0ex | |
|
5 | 4 | prid2 | |
6 | 5 | a1i | |
7 | ixpeq1 | |
|
8 | ixp0x | |
|
9 | 8 | a1i | |
10 | 7 9 | eqtrd | |
11 | 2fveq3 | |
|
12 | rrxtopn0b | |
|
13 | 12 | a1i | |
14 | 11 13 | eqtrd | |
15 | 10 14 | eleq12d | |
16 | 6 15 | mpbird | |
17 | 16 | adantl | |
18 | neqne | |
|
19 | 18 | adantl | |
20 | fveq2 | |
|
21 | fveq2 | |
|
22 | 20 21 | oveq12d | |
23 | 22 | cbvixpv | |
24 | 23 | eleq2i | |
25 | 24 | biimpi | |
26 | 25 | adantl | |
27 | 1 | ad2antrr | |
28 | 24 27 | sylan2br | |
29 | simplr | |
|
30 | 24 29 | sylan2br | |
31 | 2 | ad2antrr | |
32 | 24 31 | sylan2br | |
33 | 3 | ad2antrr | |
34 | 24 33 | sylan2br | |
35 | simpr | |
|
36 | 24 35 | sylan2br | |
37 | eqid | |
|
38 | fveq2 | |
|
39 | fveq2 | |
|
40 | 38 39 | oveq12d | |
41 | fveq2 | |
|
42 | 39 41 | oveq12d | |
43 | 40 42 | breq12d | |
44 | 43 40 42 | ifbieq12d | |
45 | 44 | cbvmptv | |
46 | 45 | rneqi | |
47 | 46 | infeq1i | |
48 | eqid | |
|
49 | fveq1 | |
|
50 | 49 | oveq1d | |
51 | 50 | oveq1d | |
52 | 51 | sumeq2sdv | |
53 | 52 | fveq2d | |
54 | fveq1 | |
|
55 | 54 | oveq2d | |
56 | 55 | oveq1d | |
57 | 56 | sumeq2sdv | |
58 | 57 | fveq2d | |
59 | 53 58 | cbvmpov | |
60 | 28 30 32 34 36 37 47 48 59 | ioorrnopnlem | |
61 | 26 60 | syldan | |
62 | 61 | ralrimiva | |
63 | eqid | |
|
64 | 63 | rrxtop | |
65 | 1 64 | syl | |
66 | 65 | adantr | |
67 | eltop2 | |
|
68 | 66 67 | syl | |
69 | 62 68 | mpbird | |
70 | 19 69 | syldan | |
71 | 17 70 | pm2.61dan | |