Metamath Proof Explorer


Theorem iscnp4

Description: The predicate "the class F is a continuous function from topology J to topology K at point P " in terms of neighborhoods. (Contributed by FL, 18-Jul-2011) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion iscnp4 JTopOnXKTopOnYPXFJCnPKPF:XYyneiKFPxneiJPFxy

Proof

Step Hyp Ref Expression
1 cnpf2 JTopOnXKTopOnYFJCnPKPF:XY
2 1 3expa JTopOnXKTopOnYFJCnPKPF:XY
3 2 3adantl3 JTopOnXKTopOnYPXFJCnPKPF:XY
4 simplr JTopOnXKTopOnYPXFJCnPKPyneiKFPFJCnPKP
5 simpll2 JTopOnXKTopOnYPXFJCnPKPyneiKFPKTopOnY
6 topontop KTopOnYKTop
7 5 6 syl JTopOnXKTopOnYPXFJCnPKPyneiKFPKTop
8 eqid K=K
9 8 neii1 KTopyneiKFPyK
10 7 9 sylancom JTopOnXKTopOnYPXFJCnPKPyneiKFPyK
11 8 ntropn KTopyKintKyK
12 7 10 11 syl2anc JTopOnXKTopOnYPXFJCnPKPyneiKFPintKyK
13 simpr JTopOnXKTopOnYPXFJCnPKPyneiKFPyneiKFP
14 3 adantr JTopOnXKTopOnYPXFJCnPKPyneiKFPF:XY
15 simpll3 JTopOnXKTopOnYPXFJCnPKPyneiKFPPX
16 14 15 ffvelcdmd JTopOnXKTopOnYPXFJCnPKPyneiKFPFPY
17 toponuni KTopOnYY=K
18 5 17 syl JTopOnXKTopOnYPXFJCnPKPyneiKFPY=K
19 16 18 eleqtrd JTopOnXKTopOnYPXFJCnPKPyneiKFPFPK
20 19 snssd JTopOnXKTopOnYPXFJCnPKPyneiKFPFPK
21 8 neiint KTopFPKyKyneiKFPFPintKy
22 7 20 10 21 syl3anc JTopOnXKTopOnYPXFJCnPKPyneiKFPyneiKFPFPintKy
23 13 22 mpbid JTopOnXKTopOnYPXFJCnPKPyneiKFPFPintKy
24 fvex FPV
25 24 snss FPintKyFPintKy
26 23 25 sylibr JTopOnXKTopOnYPXFJCnPKPyneiKFPFPintKy
27 cnpimaex FJCnPKPintKyKFPintKyxJPxFxintKy
28 4 12 26 27 syl3anc JTopOnXKTopOnYPXFJCnPKPyneiKFPxJPxFxintKy
29 simpl1 JTopOnXKTopOnYPXFJCnPKPJTopOnX
30 29 ad2antrr JTopOnXKTopOnYPXFJCnPKPyneiKFPxJPxFxintKyJTopOnX
31 topontop JTopOnXJTop
32 30 31 syl JTopOnXKTopOnYPXFJCnPKPyneiKFPxJPxFxintKyJTop
33 simprl JTopOnXKTopOnYPXFJCnPKPyneiKFPxJPxFxintKyxJ
34 simprrl JTopOnXKTopOnYPXFJCnPKPyneiKFPxJPxFxintKyPx
35 opnneip JTopxJPxxneiJP
36 32 33 34 35 syl3anc JTopOnXKTopOnYPXFJCnPKPyneiKFPxJPxFxintKyxneiJP
37 simprrr JTopOnXKTopOnYPXFJCnPKPyneiKFPxJPxFxintKyFxintKy
38 8 ntrss2 KTopyKintKyy
39 7 10 38 syl2anc JTopOnXKTopOnYPXFJCnPKPyneiKFPintKyy
40 39 adantr JTopOnXKTopOnYPXFJCnPKPyneiKFPxJPxFxintKyintKyy
41 37 40 sstrd JTopOnXKTopOnYPXFJCnPKPyneiKFPxJPxFxintKyFxy
42 28 36 41 reximssdv JTopOnXKTopOnYPXFJCnPKPyneiKFPxneiJPFxy
43 42 ralrimiva JTopOnXKTopOnYPXFJCnPKPyneiKFPxneiJPFxy
44 3 43 jca JTopOnXKTopOnYPXFJCnPKPF:XYyneiKFPxneiJPFxy
45 44 ex JTopOnXKTopOnYPXFJCnPKPF:XYyneiKFPxneiJPFxy
46 simpll2 JTopOnXKTopOnYPXF:XYyKFPyKTopOnY
47 46 6 syl JTopOnXKTopOnYPXF:XYyKFPyKTop
48 simprl JTopOnXKTopOnYPXF:XYyKFPyyK
49 simprr JTopOnXKTopOnYPXF:XYyKFPyFPy
50 opnneip KTopyKFPyyneiKFP
51 47 48 49 50 syl3anc JTopOnXKTopOnYPXF:XYyKFPyyneiKFP
52 simpl1 JTopOnXKTopOnYPXF:XYJTopOnX
53 52 ad2antrr JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyJTopOnX
54 53 31 syl JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyJTop
55 simprl JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyxneiJP
56 eqid J=J
57 56 neii1 JTopxneiJPxJ
58 54 55 57 syl2anc JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyxJ
59 56 ntropn JTopxJintJxJ
60 54 58 59 syl2anc JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyintJxJ
61 simpll3 JTopOnXKTopOnYPXF:XYyKFPyPX
62 61 adantr JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyPX
63 toponuni JTopOnXX=J
64 53 63 syl JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyX=J
65 62 64 eleqtrd JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyPJ
66 65 snssd JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyPJ
67 56 neiint JTopPJxJxneiJPPintJx
68 54 66 58 67 syl3anc JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyxneiJPPintJx
69 55 68 mpbid JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyPintJx
70 snssg PXPintJxPintJx
71 62 70 syl JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyPintJxPintJx
72 69 71 mpbird JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyPintJx
73 56 ntrss2 JTopxJintJxx
74 54 58 73 syl2anc JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyintJxx
75 imass2 intJxxFintJxFx
76 74 75 syl JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyFintJxFx
77 simprr JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyFxy
78 76 77 sstrd JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyFintJxy
79 eleq2 z=intJxPzPintJx
80 imaeq2 z=intJxFz=FintJx
81 80 sseq1d z=intJxFzyFintJxy
82 79 81 anbi12d z=intJxPzFzyPintJxFintJxy
83 82 rspcev intJxJPintJxFintJxyzJPzFzy
84 60 72 78 83 syl12anc JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyzJPzFzy
85 84 rexlimdvaa JTopOnXKTopOnYPXF:XYyKFPyxneiJPFxyzJPzFzy
86 51 85 embantd JTopOnXKTopOnYPXF:XYyKFPyyneiKFPxneiJPFxyzJPzFzy
87 86 ex JTopOnXKTopOnYPXF:XYyKFPyyneiKFPxneiJPFxyzJPzFzy
88 87 com23 JTopOnXKTopOnYPXF:XYyneiKFPxneiJPFxyyKFPyzJPzFzy
89 88 exp4a JTopOnXKTopOnYPXF:XYyneiKFPxneiJPFxyyKFPyzJPzFzy
90 89 ralimdv2 JTopOnXKTopOnYPXF:XYyneiKFPxneiJPFxyyKFPyzJPzFzy
91 90 imdistanda JTopOnXKTopOnYPXF:XYyneiKFPxneiJPFxyF:XYyKFPyzJPzFzy
92 iscnp JTopOnXKTopOnYPXFJCnPKPF:XYyKFPyzJPzFzy
93 91 92 sylibrd JTopOnXKTopOnYPXF:XYyneiKFPxneiJPFxyFJCnPKP
94 45 93 impbid JTopOnXKTopOnYPXFJCnPKPF:XYyneiKFPxneiJPFxy