| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnpf2 |  | 
						
							| 2 | 1 | 3expa |  | 
						
							| 3 | 2 | 3adantl3 |  | 
						
							| 4 |  | simplr |  | 
						
							| 5 |  | simpll2 |  | 
						
							| 6 |  | topontop |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 8 | neii1 |  | 
						
							| 10 | 7 9 | sylancom |  | 
						
							| 11 | 8 | ntropn |  | 
						
							| 12 | 7 10 11 | syl2anc |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 3 | adantr |  | 
						
							| 15 |  | simpll3 |  | 
						
							| 16 | 14 15 | ffvelcdmd |  | 
						
							| 17 |  | toponuni |  | 
						
							| 18 | 5 17 | syl |  | 
						
							| 19 | 16 18 | eleqtrd |  | 
						
							| 20 | 19 | snssd |  | 
						
							| 21 | 8 | neiint |  | 
						
							| 22 | 7 20 10 21 | syl3anc |  | 
						
							| 23 | 13 22 | mpbid |  | 
						
							| 24 |  | fvex |  | 
						
							| 25 | 24 | snss |  | 
						
							| 26 | 23 25 | sylibr |  | 
						
							| 27 |  | cnpimaex |  | 
						
							| 28 | 4 12 26 27 | syl3anc |  | 
						
							| 29 |  | simpl1 |  | 
						
							| 30 | 29 | ad2antrr |  | 
						
							| 31 |  | topontop |  | 
						
							| 32 | 30 31 | syl |  | 
						
							| 33 |  | simprl |  | 
						
							| 34 |  | simprrl |  | 
						
							| 35 |  | opnneip |  | 
						
							| 36 | 32 33 34 35 | syl3anc |  | 
						
							| 37 |  | simprrr |  | 
						
							| 38 | 8 | ntrss2 |  | 
						
							| 39 | 7 10 38 | syl2anc |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 37 40 | sstrd |  | 
						
							| 42 | 28 36 41 | reximssdv |  | 
						
							| 43 | 42 | ralrimiva |  | 
						
							| 44 | 3 43 | jca |  | 
						
							| 45 | 44 | ex |  | 
						
							| 46 |  | simpll2 |  | 
						
							| 47 | 46 6 | syl |  | 
						
							| 48 |  | simprl |  | 
						
							| 49 |  | simprr |  | 
						
							| 50 |  | opnneip |  | 
						
							| 51 | 47 48 49 50 | syl3anc |  | 
						
							| 52 |  | simpl1 |  | 
						
							| 53 | 52 | ad2antrr |  | 
						
							| 54 | 53 31 | syl |  | 
						
							| 55 |  | simprl |  | 
						
							| 56 |  | eqid |  | 
						
							| 57 | 56 | neii1 |  | 
						
							| 58 | 54 55 57 | syl2anc |  | 
						
							| 59 | 56 | ntropn |  | 
						
							| 60 | 54 58 59 | syl2anc |  | 
						
							| 61 |  | simpll3 |  | 
						
							| 62 | 61 | adantr |  | 
						
							| 63 |  | toponuni |  | 
						
							| 64 | 53 63 | syl |  | 
						
							| 65 | 62 64 | eleqtrd |  | 
						
							| 66 | 65 | snssd |  | 
						
							| 67 | 56 | neiint |  | 
						
							| 68 | 54 66 58 67 | syl3anc |  | 
						
							| 69 | 55 68 | mpbid |  | 
						
							| 70 |  | snssg |  | 
						
							| 71 | 62 70 | syl |  | 
						
							| 72 | 69 71 | mpbird |  | 
						
							| 73 | 56 | ntrss2 |  | 
						
							| 74 | 54 58 73 | syl2anc |  | 
						
							| 75 |  | imass2 |  | 
						
							| 76 | 74 75 | syl |  | 
						
							| 77 |  | simprr |  | 
						
							| 78 | 76 77 | sstrd |  | 
						
							| 79 |  | eleq2 |  | 
						
							| 80 |  | imaeq2 |  | 
						
							| 81 | 80 | sseq1d |  | 
						
							| 82 | 79 81 | anbi12d |  | 
						
							| 83 | 82 | rspcev |  | 
						
							| 84 | 60 72 78 83 | syl12anc |  | 
						
							| 85 | 84 | rexlimdvaa |  | 
						
							| 86 | 51 85 | embantd |  | 
						
							| 87 | 86 | ex |  | 
						
							| 88 | 87 | com23 |  | 
						
							| 89 | 88 | exp4a |  | 
						
							| 90 | 89 | ralimdv2 |  | 
						
							| 91 | 90 | imdistanda |  | 
						
							| 92 |  | iscnp |  | 
						
							| 93 | 91 92 | sylibrd |  | 
						
							| 94 | 45 93 | impbid |  |