Metamath Proof Explorer


Theorem isercolllem1

Description: Lemma for isercoll . (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses isercoll.z Z=M
isercoll.m φM
isercoll.g φG:Z
isercoll.i φkGk<Gk+1
Assertion isercolllem1 φSGSIsom<,<SGS

Proof

Step Hyp Ref Expression
1 isercoll.z Z=M
2 isercoll.m φM
3 isercoll.g φG:Z
4 isercoll.i φkGk<Gk+1
5 uzssz M
6 1 5 eqsstri Z
7 zssre
8 6 7 sstri Z
9 3 ad2antrr φxyx<yG:Z
10 simplrl φxyx<yx
11 9 10 ffvelcdmd φxyx<yGxZ
12 8 11 sselid φxyx<yGx
13 simplrr φxyx<yy
14 13 nnred φxyx<yy
15 12 14 resubcld φxyx<yGxy
16 10 nnred φxyx<yx
17 12 16 resubcld φxyx<yGxx
18 9 13 ffvelcdmd φxyx<yGyZ
19 8 18 sselid φxyx<yGy
20 19 14 resubcld φxyx<yGyy
21 simpr φxyx<yx<y
22 16 14 12 21 ltsub2dd φxyx<yGxy<Gxx
23 10 nnzd φxyx<yx
24 13 nnzd φxyx<yy
25 16 14 21 ltled φxyx<yxy
26 eluz2 yxxyxy
27 23 24 25 26 syl3anbrc φxyx<yyx
28 elfzuz kxykx
29 eluznn xkxk
30 10 29 sylan φxyx<ykxk
31 fveq2 n=kGn=Gk
32 id n=kn=k
33 31 32 oveq12d n=kGnn=Gkk
34 eqid nGnn=nGnn
35 ovex GkkV
36 33 34 35 fvmpt knGnnk=Gkk
37 36 adantl φxyx<yknGnnk=Gkk
38 9 ffvelcdmda φxyx<ykGkZ
39 8 38 sselid φxyx<ykGk
40 nnre kk
41 40 adantl φxyx<ykk
42 39 41 resubcld φxyx<ykGkk
43 37 42 eqeltrd φxyx<yknGnnk
44 30 43 syldan φxyx<ykxnGnnk
45 28 44 sylan2 φxyx<ykxynGnnk
46 elfzuz kxy1kx
47 peano2nn kk+1
48 ffvelcdm G:Zk+1Gk+1Z
49 9 47 48 syl2an φxyx<ykGk+1Z
50 8 49 sselid φxyx<ykGk+1
51 peano2rem Gk+1Gk+11
52 50 51 syl φxyx<ykGk+11
53 4 ad4ant14 φxyx<ykGk<Gk+1
54 6 38 sselid φxyx<ykGk
55 6 49 sselid φxyx<ykGk+1
56 zltlem1 GkGk+1Gk<Gk+1GkGk+11
57 54 55 56 syl2anc φxyx<ykGk<Gk+1GkGk+11
58 53 57 mpbid φxyx<ykGkGk+11
59 39 52 41 58 lesub1dd φxyx<ykGkkGk+1-1-k
60 50 recnd φxyx<ykGk+1
61 1cnd φxyx<yk1
62 41 recnd φxyx<ykk
63 60 61 62 sub32d φxyx<ykGk+1-1-k=Gk+1-k-1
64 60 62 61 subsub4d φxyx<ykGk+1-k-1=Gk+1k+1
65 63 64 eqtrd φxyx<ykGk+1-1-k=Gk+1k+1
66 59 65 breqtrd φxyx<ykGkkGk+1k+1
67 47 adantl φxyx<ykk+1
68 fveq2 n=k+1Gn=Gk+1
69 id n=k+1n=k+1
70 68 69 oveq12d n=k+1Gnn=Gk+1k+1
71 ovex Gk+1k+1V
72 70 34 71 fvmpt k+1nGnnk+1=Gk+1k+1
73 67 72 syl φxyx<yknGnnk+1=Gk+1k+1
74 66 37 73 3brtr4d φxyx<yknGnnknGnnk+1
75 30 74 syldan φxyx<ykxnGnnknGnnk+1
76 46 75 sylan2 φxyx<ykxy1nGnnknGnnk+1
77 27 45 76 monoord φxyx<ynGnnxnGnny
78 fveq2 n=xGn=Gx
79 id n=xn=x
80 78 79 oveq12d n=xGnn=Gxx
81 ovex GxxV
82 80 34 81 fvmpt xnGnnx=Gxx
83 10 82 syl φxyx<ynGnnx=Gxx
84 fveq2 n=yGn=Gy
85 id n=yn=y
86 84 85 oveq12d n=yGnn=Gyy
87 ovex GyyV
88 86 34 87 fvmpt ynGnny=Gyy
89 13 88 syl φxyx<ynGnny=Gyy
90 77 83 89 3brtr3d φxyx<yGxxGyy
91 15 17 20 22 90 ltletrd φxyx<yGxy<Gyy
92 12 19 14 ltsub1d φxyx<yGx<GyGxy<Gyy
93 91 92 mpbird φxyx<yGx<Gy
94 93 ex φxyx<yGx<Gy
95 94 ralrimivva φxyx<yGx<Gy
96 ss2ralv Sxyx<yGx<GyxSySx<yGx<Gy
97 95 96 mpan9 φSxSySx<yGx<Gy
98 nnssre
99 ltso <Or
100 soss <Or<Or
101 98 99 100 mp2 <Or
102 101 a1i φS<Or
103 soss Z<Or<OrZ
104 8 99 103 mp2 <OrZ
105 104 a1i φS<OrZ
106 3 adantr φSG:Z
107 simpr φSS
108 soisores <Or<OrZG:ZSGSIsom<,<SGSxSySx<yGx<Gy
109 102 105 106 107 108 syl22anc φSGSIsom<,<SGSxSySx<yGx<Gy
110 97 109 mpbird φSGSIsom<,<SGS