Metamath Proof Explorer


Theorem islss3

Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses islss3.x X=W𝑠U
islss3.v V=BaseW
islss3.s S=LSubSpW
Assertion islss3 WLModUSUVXLMod

Proof

Step Hyp Ref Expression
1 islss3.x X=W𝑠U
2 islss3.v V=BaseW
3 islss3.s S=LSubSpW
4 2 3 lssss USUV
5 4 adantl WLModUSUV
6 1 2 ressbas2 UVU=BaseX
7 6 adantl WLModUVU=BaseX
8 4 7 sylan2 WLModUSU=BaseX
9 eqid +W=+W
10 1 9 ressplusg US+W=+X
11 10 adantl WLModUS+W=+X
12 eqid ScalarW=ScalarW
13 1 12 resssca USScalarW=ScalarX
14 13 adantl WLModUSScalarW=ScalarX
15 eqid W=W
16 1 15 ressvsca USW=X
17 16 adantl WLModUSW=X
18 eqidd WLModUSBaseScalarW=BaseScalarW
19 eqidd WLModUS+ScalarW=+ScalarW
20 eqidd WLModUSScalarW=ScalarW
21 eqidd WLModUS1ScalarW=1ScalarW
22 12 lmodring WLModScalarWRing
23 22 adantr WLModUSScalarWRing
24 3 lsssubg WLModUSUSubGrpW
25 1 subggrp USubGrpWXGrp
26 24 25 syl WLModUSXGrp
27 eqid BaseScalarW=BaseScalarW
28 12 15 27 3 lssvscl WLModUSxBaseScalarWaUxWaU
29 28 3impb WLModUSxBaseScalarWaUxWaU
30 simpll WLModUSxBaseScalarWaUbUWLMod
31 simpr1 WLModUSxBaseScalarWaUbUxBaseScalarW
32 4 ad2antlr WLModUSxBaseScalarWaUbUUV
33 simpr2 WLModUSxBaseScalarWaUbUaU
34 32 33 sseldd WLModUSxBaseScalarWaUbUaV
35 simpr3 WLModUSxBaseScalarWaUbUbU
36 32 35 sseldd WLModUSxBaseScalarWaUbUbV
37 2 9 12 15 27 lmodvsdi WLModxBaseScalarWaVbVxWa+Wb=xWa+WxWb
38 30 31 34 36 37 syl13anc WLModUSxBaseScalarWaUbUxWa+Wb=xWa+WxWb
39 simpll WLModUSxBaseScalarWaBaseScalarWbUWLMod
40 simpr1 WLModUSxBaseScalarWaBaseScalarWbUxBaseScalarW
41 simpr2 WLModUSxBaseScalarWaBaseScalarWbUaBaseScalarW
42 4 ad2antlr WLModUSxBaseScalarWaBaseScalarWbUUV
43 simpr3 WLModUSxBaseScalarWaBaseScalarWbUbU
44 42 43 sseldd WLModUSxBaseScalarWaBaseScalarWbUbV
45 eqid +ScalarW=+ScalarW
46 2 9 12 15 27 45 lmodvsdir WLModxBaseScalarWaBaseScalarWbVx+ScalarWaWb=xWb+WaWb
47 39 40 41 44 46 syl13anc WLModUSxBaseScalarWaBaseScalarWbUx+ScalarWaWb=xWb+WaWb
48 eqid ScalarW=ScalarW
49 2 12 15 27 48 lmodvsass WLModxBaseScalarWaBaseScalarWbVxScalarWaWb=xWaWb
50 39 40 41 44 49 syl13anc WLModUSxBaseScalarWaBaseScalarWbUxScalarWaWb=xWaWb
51 5 sselda WLModUSxUxV
52 eqid 1ScalarW=1ScalarW
53 2 12 15 52 lmodvs1 WLModxV1ScalarWWx=x
54 53 adantlr WLModUSxV1ScalarWWx=x
55 51 54 syldan WLModUSxU1ScalarWWx=x
56 8 11 14 17 18 19 20 21 23 26 29 38 47 50 55 islmodd WLModUSXLMod
57 5 56 jca WLModUSUVXLMod
58 simprl WLModUVXLModUV
59 58 6 syl WLModUVXLModU=BaseX
60 fvex BaseXV
61 59 60 eqeltrdi WLModUVXLModUV
62 1 12 resssca UVScalarW=ScalarX
63 61 62 syl WLModUVXLModScalarW=ScalarX
64 63 eqcomd WLModUVXLModScalarX=ScalarW
65 eqidd WLModUVXLModBaseScalarX=BaseScalarX
66 2 a1i WLModUVXLModV=BaseW
67 1 9 ressplusg UV+W=+X
68 61 67 syl WLModUVXLMod+W=+X
69 68 eqcomd WLModUVXLMod+X=+W
70 1 15 ressvsca UVW=X
71 61 70 syl WLModUVXLModW=X
72 71 eqcomd WLModUVXLModX=W
73 3 a1i WLModUVXLModS=LSubSpW
74 59 58 eqsstrrd WLModUVXLModBaseXV
75 lmodgrp XLModXGrp
76 75 ad2antll WLModUVXLModXGrp
77 eqid BaseX=BaseX
78 77 grpbn0 XGrpBaseX
79 76 78 syl WLModUVXLModBaseX
80 eqid LSubSpX=LSubSpX
81 77 80 lss1 XLModBaseXLSubSpX
82 81 ad2antll WLModUVXLModBaseXLSubSpX
83 eqid ScalarX=ScalarX
84 eqid BaseScalarX=BaseScalarX
85 eqid +X=+X
86 eqid X=X
87 83 84 85 86 80 lsscl BaseXLSubSpXxBaseScalarXaBaseXbBaseXxXa+XbBaseX
88 82 87 sylan WLModUVXLModxBaseScalarXaBaseXbBaseXxXa+XbBaseX
89 64 65 66 69 72 73 74 79 88 islssd WLModUVXLModBaseXS
90 59 89 eqeltrd WLModUVXLModUS
91 57 90 impbida WLModUSUVXLMod