| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islss3.x |
|
| 2 |
|
islss3.v |
|
| 3 |
|
islss3.s |
|
| 4 |
2 3
|
lssss |
|
| 5 |
4
|
adantl |
|
| 6 |
1 2
|
ressbas2 |
|
| 7 |
6
|
adantl |
|
| 8 |
4 7
|
sylan2 |
|
| 9 |
|
eqid |
|
| 10 |
1 9
|
ressplusg |
|
| 11 |
10
|
adantl |
|
| 12 |
|
eqid |
|
| 13 |
1 12
|
resssca |
|
| 14 |
13
|
adantl |
|
| 15 |
|
eqid |
|
| 16 |
1 15
|
ressvsca |
|
| 17 |
16
|
adantl |
|
| 18 |
|
eqidd |
|
| 19 |
|
eqidd |
|
| 20 |
|
eqidd |
|
| 21 |
|
eqidd |
|
| 22 |
12
|
lmodring |
|
| 23 |
22
|
adantr |
|
| 24 |
3
|
lsssubg |
|
| 25 |
1
|
subggrp |
|
| 26 |
24 25
|
syl |
|
| 27 |
|
eqid |
|
| 28 |
12 15 27 3
|
lssvscl |
|
| 29 |
28
|
3impb |
|
| 30 |
|
simpll |
|
| 31 |
|
simpr1 |
|
| 32 |
4
|
ad2antlr |
|
| 33 |
|
simpr2 |
|
| 34 |
32 33
|
sseldd |
|
| 35 |
|
simpr3 |
|
| 36 |
32 35
|
sseldd |
|
| 37 |
2 9 12 15 27
|
lmodvsdi |
|
| 38 |
30 31 34 36 37
|
syl13anc |
|
| 39 |
|
simpll |
|
| 40 |
|
simpr1 |
|
| 41 |
|
simpr2 |
|
| 42 |
4
|
ad2antlr |
|
| 43 |
|
simpr3 |
|
| 44 |
42 43
|
sseldd |
|
| 45 |
|
eqid |
|
| 46 |
2 9 12 15 27 45
|
lmodvsdir |
|
| 47 |
39 40 41 44 46
|
syl13anc |
|
| 48 |
|
eqid |
|
| 49 |
2 12 15 27 48
|
lmodvsass |
|
| 50 |
39 40 41 44 49
|
syl13anc |
|
| 51 |
5
|
sselda |
|
| 52 |
|
eqid |
|
| 53 |
2 12 15 52
|
lmodvs1 |
|
| 54 |
53
|
adantlr |
|
| 55 |
51 54
|
syldan |
|
| 56 |
8 11 14 17 18 19 20 21 23 26 29 38 47 50 55
|
islmodd |
|
| 57 |
5 56
|
jca |
|
| 58 |
|
simprl |
|
| 59 |
58 6
|
syl |
|
| 60 |
|
fvex |
|
| 61 |
59 60
|
eqeltrdi |
|
| 62 |
1 12
|
resssca |
|
| 63 |
61 62
|
syl |
|
| 64 |
63
|
eqcomd |
|
| 65 |
|
eqidd |
|
| 66 |
2
|
a1i |
|
| 67 |
1 9
|
ressplusg |
|
| 68 |
61 67
|
syl |
|
| 69 |
68
|
eqcomd |
|
| 70 |
1 15
|
ressvsca |
|
| 71 |
61 70
|
syl |
|
| 72 |
71
|
eqcomd |
|
| 73 |
3
|
a1i |
|
| 74 |
59 58
|
eqsstrrd |
|
| 75 |
|
lmodgrp |
|
| 76 |
75
|
ad2antll |
|
| 77 |
|
eqid |
|
| 78 |
77
|
grpbn0 |
|
| 79 |
76 78
|
syl |
|
| 80 |
|
eqid |
|
| 81 |
77 80
|
lss1 |
|
| 82 |
81
|
ad2antll |
|
| 83 |
|
eqid |
|
| 84 |
|
eqid |
|
| 85 |
|
eqid |
|
| 86 |
|
eqid |
|
| 87 |
83 84 85 86 80
|
lsscl |
|
| 88 |
82 87
|
sylan |
|
| 89 |
64 65 66 69 72 73 74 79 88
|
islssd |
|
| 90 |
59 89
|
eqeltrd |
|
| 91 |
57 90
|
impbida |
|