Metamath Proof Explorer


Theorem isumsplit

Description: Split off the first N terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumsplit.1 Z=M
isumsplit.2 W=N
isumsplit.3 φNZ
isumsplit.4 φkZFk=A
isumsplit.5 φkZA
isumsplit.6 φseqM+Fdom
Assertion isumsplit φkZA=k=MN1A+kWA

Proof

Step Hyp Ref Expression
1 isumsplit.1 Z=M
2 isumsplit.2 W=N
3 isumsplit.3 φNZ
4 isumsplit.4 φkZFk=A
5 isumsplit.5 φkZA
6 isumsplit.6 φseqM+Fdom
7 3 1 eleqtrdi φNM
8 eluzel2 NMM
9 7 8 syl φM
10 eluzelz NMN
11 7 10 syl φN
12 uzss NMNM
13 7 12 syl φNM
14 13 2 1 3sstr4g φWZ
15 14 sselda φkWkZ
16 15 4 syldan φkWFk=A
17 15 5 syldan φkWA
18 4 5 eqeltrd φkZFk
19 1 3 18 iserex φseqM+FdomseqN+Fdom
20 6 19 mpbid φseqN+Fdom
21 2 11 16 17 20 isumclim2 φseqN+FkWA
22 fzfid φMN1Fin
23 elfzuz kMN1kM
24 23 1 eleqtrrdi kMN1kZ
25 24 5 sylan2 φkMN1A
26 22 25 fsumcl φk=MN1A
27 15 18 syldan φkWFk
28 2 11 27 serf φseqN+F:W
29 28 ffvelcdmda φjWseqN+Fj
30 9 zred φM
31 30 ltm1d φM1<M
32 peano2zm MM1
33 fzn MM1M1<MMM1=
34 9 32 33 syl2anc2 φM1<MMM1=
35 31 34 mpbid φMM1=
36 35 sumeq1d φk=MM1A=kA
37 36 adantr φjWk=MM1A=kA
38 sum0 kA=0
39 37 38 eqtrdi φjWk=MM1A=0
40 39 oveq1d φjWk=MM1A+seqM+Fj=0+seqM+Fj
41 14 sselda φjWjZ
42 1 9 18 serf φseqM+F:Z
43 42 ffvelcdmda φjZseqM+Fj
44 41 43 syldan φjWseqM+Fj
45 44 addlidd φjW0+seqM+Fj=seqM+Fj
46 40 45 eqtr2d φjWseqM+Fj=k=MM1A+seqM+Fj
47 oveq1 N=MN1=M1
48 47 oveq2d N=MMN1=MM1
49 48 sumeq1d N=Mk=MN1A=k=MM1A
50 seqeq1 N=MseqN+F=seqM+F
51 50 fveq1d N=MseqN+Fj=seqM+Fj
52 49 51 oveq12d N=Mk=MN1A+seqN+Fj=k=MM1A+seqM+Fj
53 52 eqeq2d N=MseqM+Fj=k=MN1A+seqN+FjseqM+Fj=k=MM1A+seqM+Fj
54 46 53 syl5ibrcom φjWN=MseqM+Fj=k=MN1A+seqN+Fj
55 addcl kmk+m
56 55 adantl φjWNM+1kmk+m
57 addass kmxk+m+x=k+m+x
58 57 adantl φjWNM+1kmxk+m+x=k+m+x
59 simplr φjWNM+1jW
60 simpll φjWNM+1φ
61 11 zcnd φN
62 ax-1cn 1
63 npcan N1N-1+1=N
64 61 62 63 sylancl φN-1+1=N
65 64 eqcomd φN=N-1+1
66 60 65 syl φjWNM+1N=N-1+1
67 66 fveq2d φjWNM+1N=N-1+1
68 2 67 eqtrid φjWNM+1W=N-1+1
69 59 68 eleqtrd φjWNM+1jN-1+1
70 9 adantr φjWM
71 eluzp1m1 MNM+1N1M
72 70 71 sylan φjWNM+1N1M
73 elfzuz kMjkM
74 73 1 eleqtrrdi kMjkZ
75 60 74 18 syl2an φjWNM+1kMjFk
76 56 58 69 72 75 seqsplit φjWNM+1seqM+Fj=seqM+FN1+seqN-1+1+Fj
77 60 24 4 syl2an φjWNM+1kMN1Fk=A
78 60 24 5 syl2an φjWNM+1kMN1A
79 77 72 78 fsumser φjWNM+1k=MN1A=seqM+FN1
80 66 seqeq1d φjWNM+1seqN+F=seqN-1+1+F
81 80 fveq1d φjWNM+1seqN+Fj=seqN-1+1+Fj
82 79 81 oveq12d φjWNM+1k=MN1A+seqN+Fj=seqM+FN1+seqN-1+1+Fj
83 76 82 eqtr4d φjWNM+1seqM+Fj=k=MN1A+seqN+Fj
84 83 ex φjWNM+1seqM+Fj=k=MN1A+seqN+Fj
85 uzp1 NMN=MNM+1
86 7 85 syl φN=MNM+1
87 86 adantr φjWN=MNM+1
88 54 84 87 mpjaod φjWseqM+Fj=k=MN1A+seqN+Fj
89 2 11 21 26 6 29 88 climaddc2 φseqM+Fk=MN1A+kWA
90 1 9 4 5 89 isumclim φkZA=k=MN1A+kWA