Metamath Proof Explorer


Theorem itgcnlem

Description: Expand out the sum in dfitg . (Contributed by Mario Carneiro, 1-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses itgcnlem.r R=2xifxA0BB0
itgcnlem.s S=2xifxA0BB0
itgcnlem.t T=2xifxA0BB0
itgcnlem.u U=2xifxA0BB0
itgcnlem.v φxABV
itgcnlem.i φxAB𝐿1
Assertion itgcnlem φABdx=R-S+iTU

Proof

Step Hyp Ref Expression
1 itgcnlem.r R=2xifxA0BB0
2 itgcnlem.s S=2xifxA0BB0
3 itgcnlem.t T=2xifxA0BB0
4 itgcnlem.u U=2xifxA0BB0
5 itgcnlem.v φxABV
6 itgcnlem.i φxAB𝐿1
7 eqid Bik=Bik
8 7 dfitg ABdx=k=03ik2xifxA0BikBik0
9 nn0uz 0=0
10 df-3 3=2+1
11 oveq2 k=3ik=i3
12 i3 i3=i
13 11 12 eqtrdi k=3ik=i
14 12 itgvallem k=32xifxA0BikBik0=2xifxA0BiBi0
15 13 14 oveq12d k=3ik2xifxA0BikBik0=i2xifxA0BiBi0
16 ax-icn i
17 16 a1i φi
18 expcl ik0ik
19 17 18 sylan φk0ik
20 nn0z k0k
21 eqidd φxifxA0BikBik0=xifxA0BikBik0
22 eqidd φxABik=Bik
23 21 22 6 5 iblitg φk2xifxA0BikBik0
24 23 recnd φk2xifxA0BikBik0
25 20 24 sylan2 φk02xifxA0BikBik0
26 19 25 mulcld φk0ik2xifxA0BikBik0
27 df-2 2=1+1
28 oveq2 k=2ik=i2
29 i2 i2=1
30 28 29 eqtrdi k=2ik=1
31 29 itgvallem k=22xifxA0BikBik0=2xifxA0B1B10
32 30 31 oveq12d k=2ik2xifxA0BikBik0=-12xifxA0B1B10
33 1e0p1 1=0+1
34 oveq2 k=1ik=i1
35 exp1 ii1=i
36 16 35 ax-mp i1=i
37 34 36 eqtrdi k=1ik=i
38 36 itgvallem k=12xifxA0BikBik0=2xifxA0BiBi0
39 37 38 oveq12d k=1ik2xifxA0BikBik0=i2xifxA0BiBi0
40 0z 0
41 iblmbf xAB𝐿1xABMblFn
42 6 41 syl φxABMblFn
43 42 5 mbfmptcl φxAB
44 43 div1d φxAB1=B
45 44 fveq2d φxAB1=B
46 45 ibllem φifxA0B1B10=ifxA0BB0
47 46 mpteq2dv φxifxA0B1B10=xifxA0BB0
48 47 fveq2d φ2xifxA0B1B10=2xifxA0BB0
49 1 48 eqtr4id φR=2xifxA0B1B10
50 49 oveq2d φ1R=12xifxA0B1B10
51 1 2 3 4 5 iblcnlem φxAB𝐿1xABMblFnRSTU
52 6 51 mpbid φxABMblFnRSTU
53 52 simp2d φRS
54 53 simpld φR
55 54 recnd φR
56 55 mullidd φ1R=R
57 50 56 eqtr3d φ12xifxA0B1B10=R
58 57 55 eqeltrd φ12xifxA0B1B10
59 oveq2 k=0ik=i0
60 exp0 ii0=1
61 16 60 ax-mp i0=1
62 59 61 eqtrdi k=0ik=1
63 61 itgvallem k=02xifxA0BikBik0=2xifxA0B1B10
64 62 63 oveq12d k=0ik2xifxA0BikBik0=12xifxA0B1B10
65 64 fsum1 012xifxA0B1B10k=00ik2xifxA0BikBik0=12xifxA0B1B10
66 40 58 65 sylancr φk=00ik2xifxA0BikBik0=12xifxA0B1B10
67 66 57 eqtrd φk=00ik2xifxA0BikBik0=R
68 0nn0 00
69 67 68 jctil φ00k=00ik2xifxA0BikBik0=R
70 imval BB=Bi
71 43 70 syl φxAB=Bi
72 71 ibllem φifxA0BB0=ifxA0BiBi0
73 72 mpteq2dv φxifxA0BB0=xifxA0BiBi0
74 73 fveq2d φ2xifxA0BB0=2xifxA0BiBi0
75 3 74 eqtr2id φ2xifxA0BiBi0=T
76 75 oveq2d φi2xifxA0BiBi0=iT
77 76 oveq2d φR+i2xifxA0BiBi0=R+iT
78 9 33 39 26 69 77 fsump1i φ10k=01ik2xifxA0BikBik0=R+iT
79 43 renegd φxAB=B
80 ax-1cn 1
81 80 negnegi -1=1
82 81 oveq2i B-1=B1
83 43 negcld φxAB
84 83 div1d φxAB1=B
85 82 84 eqtrid φxAB-1=B
86 80 negcli 1
87 neg1ne0 10
88 div2neg B110B-1=B1
89 86 87 88 mp3an23 BB-1=B1
90 43 89 syl φxAB-1=B1
91 85 90 eqtr3d φxAB=B1
92 91 fveq2d φxAB=B1
93 79 92 eqtr3d φxAB=B1
94 93 ibllem φifxA0BB0=ifxA0B1B10
95 94 mpteq2dv φxifxA0BB0=xifxA0B1B10
96 95 fveq2d φ2xifxA0BB0=2xifxA0B1B10
97 2 96 eqtrid φS=2xifxA0B1B10
98 97 oveq2d φ-1S=-12xifxA0B1B10
99 53 simprd φS
100 99 recnd φS
101 100 mulm1d φ-1S=S
102 98 101 eqtr3d φ-12xifxA0B1B10=S
103 102 oveq2d φR+iT+-12xifxA0B1B10=R+iT+S
104 52 simp3d φTU
105 104 simpld φT
106 105 recnd φT
107 mulcl iTiT
108 16 106 107 sylancr φiT
109 55 108 addcld φR+iT
110 109 100 negsubd φR+iT+S=R+iT-S
111 55 108 100 addsubd φR+iT-S=R-S+iT
112 103 110 111 3eqtrd φR+iT+-12xifxA0B1B10=R-S+iT
113 9 27 32 26 78 112 fsump1i φ20k=02ik2xifxA0BikBik0=R-S+iT
114 imval BB=Bi
115 83 114 syl φxAB=Bi
116 43 imnegd φxAB=B
117 16 negnegi i=i
118 117 eqcomi i=i
119 118 oveq2i Bi=Bi
120 16 negcli i
121 ine0 i0
122 16 121 negne0i i0
123 div2neg Bii0Bi=Bi
124 120 122 123 mp3an23 BBi=Bi
125 43 124 syl φxABi=Bi
126 119 125 eqtrid φxABi=Bi
127 126 fveq2d φxABi=Bi
128 115 116 127 3eqtr3d φxAB=Bi
129 128 ibllem φifxA0BB0=ifxA0BiBi0
130 129 mpteq2dv φxifxA0BB0=xifxA0BiBi0
131 130 fveq2d φ2xifxA0BB0=2xifxA0BiBi0
132 4 131 eqtrid φU=2xifxA0BiBi0
133 132 oveq2d φiU=i2xifxA0BiBi0
134 104 simprd φU
135 134 recnd φU
136 mulneg12 iUiU=iU
137 16 135 136 sylancr φiU=iU
138 133 137 eqtr3d φi2xifxA0BiBi0=iU
139 138 oveq2d φRS+iT+i2xifxA0BiBi0=RS+iT+iU
140 9 10 15 26 113 139 fsump1i φ30k=03ik2xifxA0BikBik0=RS+iT+iU
141 140 simprd φk=03ik2xifxA0BikBik0=RS+iT+iU
142 8 141 eqtrid φABdx=RS+iT+iU
143 55 100 subcld φRS
144 135 negcld φU
145 mulcl iUiU
146 16 144 145 sylancr φiU
147 143 108 146 addassd φRS+iT+iU=RS+iT+iU
148 17 106 144 adddid φiT+U=iT+iU
149 106 135 negsubd φT+U=TU
150 149 oveq2d φiT+U=iTU
151 148 150 eqtr3d φiT+iU=iTU
152 151 oveq2d φRS+iT+iU=R-S+iTU
153 142 147 152 3eqtrd φABdx=R-S+iTU