Metamath Proof Explorer


Theorem itgeqa

Description: Approximate equality of integrals. If C ( x ) = D ( x ) for almost all x , then S. B C ( x )d x = S. B D ( x ) d x and one is integrable iff the other is. (Contributed by Mario Carneiro, 12-Aug-2014) (Revised by Mario Carneiro, 2-Sep-2014)

Ref Expression
Hypotheses itgeqa.1 φ x B C
itgeqa.2 φ x B D
itgeqa.3 φ A
itgeqa.4 φ vol * A = 0
itgeqa.5 φ x B A C = D
Assertion itgeqa φ x B C 𝐿 1 x B D 𝐿 1 B C dx = B D dx

Proof

Step Hyp Ref Expression
1 itgeqa.1 φ x B C
2 itgeqa.2 φ x B D
3 itgeqa.3 φ A
4 itgeqa.4 φ vol * A = 0
5 itgeqa.5 φ x B A C = D
6 3 4 5 1 2 mbfeqa φ x B C MblFn x B D MblFn
7 ifan if x B 0 C i k C i k 0 = if x B if 0 C i k C i k 0 0
8 1 adantlr φ k 0 3 x B C
9 ax-icn i
10 ine0 i 0
11 elfzelz k 0 3 k
12 11 ad2antlr φ k 0 3 x B k
13 expclz i i 0 k i k
14 9 10 12 13 mp3an12i φ k 0 3 x B i k
15 expne0i i i 0 k i k 0
16 9 10 12 15 mp3an12i φ k 0 3 x B i k 0
17 8 14 16 divcld φ k 0 3 x B C i k
18 17 recld φ k 0 3 x B C i k
19 0re 0
20 ifcl C i k 0 if 0 C i k C i k 0
21 18 19 20 sylancl φ k 0 3 x B if 0 C i k C i k 0
22 21 rexrd φ k 0 3 x B if 0 C i k C i k 0 *
23 max1 0 C i k 0 if 0 C i k C i k 0
24 19 18 23 sylancr φ k 0 3 x B 0 if 0 C i k C i k 0
25 elxrge0 if 0 C i k C i k 0 0 +∞ if 0 C i k C i k 0 * 0 if 0 C i k C i k 0
26 22 24 25 sylanbrc φ k 0 3 x B if 0 C i k C i k 0 0 +∞
27 0e0iccpnf 0 0 +∞
28 27 a1i φ k 0 3 ¬ x B 0 0 +∞
29 26 28 ifclda φ k 0 3 if x B if 0 C i k C i k 0 0 0 +∞
30 7 29 eqeltrid φ k 0 3 if x B 0 C i k C i k 0 0 +∞
31 30 adantr φ k 0 3 x if x B 0 C i k C i k 0 0 +∞
32 31 fmpttd φ k 0 3 x if x B 0 C i k C i k 0 : 0 +∞
33 ifan if x B 0 D i k D i k 0 = if x B if 0 D i k D i k 0 0
34 2 adantlr φ k 0 3 x B D
35 34 14 16 divcld φ k 0 3 x B D i k
36 35 recld φ k 0 3 x B D i k
37 ifcl D i k 0 if 0 D i k D i k 0
38 36 19 37 sylancl φ k 0 3 x B if 0 D i k D i k 0
39 38 rexrd φ k 0 3 x B if 0 D i k D i k 0 *
40 max1 0 D i k 0 if 0 D i k D i k 0
41 19 36 40 sylancr φ k 0 3 x B 0 if 0 D i k D i k 0
42 elxrge0 if 0 D i k D i k 0 0 +∞ if 0 D i k D i k 0 * 0 if 0 D i k D i k 0
43 39 41 42 sylanbrc φ k 0 3 x B if 0 D i k D i k 0 0 +∞
44 43 28 ifclda φ k 0 3 if x B if 0 D i k D i k 0 0 0 +∞
45 33 44 eqeltrid φ k 0 3 if x B 0 D i k D i k 0 0 +∞
46 45 adantr φ k 0 3 x if x B 0 D i k D i k 0 0 +∞
47 46 fmpttd φ k 0 3 x if x B 0 D i k D i k 0 : 0 +∞
48 3 adantr φ k 0 3 A
49 4 adantr φ k 0 3 vol * A = 0
50 simpll φ x A x B φ
51 simpr φ x A x B x B
52 eldifn x A ¬ x A
53 52 ad2antlr φ x A x B ¬ x A
54 51 53 eldifd φ x A x B x B A
55 50 54 5 syl2anc φ x A x B C = D
56 55 fvoveq1d φ x A x B C i k = D i k
57 56 ibllem φ x A if x B 0 C i k C i k 0 = if x B 0 D i k D i k 0
58 eldifi x A x
59 58 adantl φ x A x
60 fvex C i k V
61 c0ex 0 V
62 60 61 ifex if x B 0 C i k C i k 0 V
63 eqid x if x B 0 C i k C i k 0 = x if x B 0 C i k C i k 0
64 63 fvmpt2 x if x B 0 C i k C i k 0 V x if x B 0 C i k C i k 0 x = if x B 0 C i k C i k 0
65 59 62 64 sylancl φ x A x if x B 0 C i k C i k 0 x = if x B 0 C i k C i k 0
66 fvex D i k V
67 66 61 ifex if x B 0 D i k D i k 0 V
68 eqid x if x B 0 D i k D i k 0 = x if x B 0 D i k D i k 0
69 68 fvmpt2 x if x B 0 D i k D i k 0 V x if x B 0 D i k D i k 0 x = if x B 0 D i k D i k 0
70 59 67 69 sylancl φ x A x if x B 0 D i k D i k 0 x = if x B 0 D i k D i k 0
71 57 65 70 3eqtr4d φ x A x if x B 0 C i k C i k 0 x = x if x B 0 D i k D i k 0 x
72 71 ralrimiva φ x A x if x B 0 C i k C i k 0 x = x if x B 0 D i k D i k 0 x
73 nfv y x if x B 0 C i k C i k 0 x = x if x B 0 D i k D i k 0 x
74 nffvmpt1 _ x x if x B 0 C i k C i k 0 y
75 nffvmpt1 _ x x if x B 0 D i k D i k 0 y
76 74 75 nfeq x x if x B 0 C i k C i k 0 y = x if x B 0 D i k D i k 0 y
77 fveq2 x = y x if x B 0 C i k C i k 0 x = x if x B 0 C i k C i k 0 y
78 fveq2 x = y x if x B 0 D i k D i k 0 x = x if x B 0 D i k D i k 0 y
79 77 78 eqeq12d x = y x if x B 0 C i k C i k 0 x = x if x B 0 D i k D i k 0 x x if x B 0 C i k C i k 0 y = x if x B 0 D i k D i k 0 y
80 73 76 79 cbvralw x A x if x B 0 C i k C i k 0 x = x if x B 0 D i k D i k 0 x y A x if x B 0 C i k C i k 0 y = x if x B 0 D i k D i k 0 y
81 72 80 sylib φ y A x if x B 0 C i k C i k 0 y = x if x B 0 D i k D i k 0 y
82 81 r19.21bi φ y A x if x B 0 C i k C i k 0 y = x if x B 0 D i k D i k 0 y
83 82 adantlr φ k 0 3 y A x if x B 0 C i k C i k 0 y = x if x B 0 D i k D i k 0 y
84 32 47 48 49 83 itg2eqa φ k 0 3 2 x if x B 0 C i k C i k 0 = 2 x if x B 0 D i k D i k 0
85 84 eleq1d φ k 0 3 2 x if x B 0 C i k C i k 0 2 x if x B 0 D i k D i k 0
86 85 ralbidva φ k 0 3 2 x if x B 0 C i k C i k 0 k 0 3 2 x if x B 0 D i k D i k 0
87 6 86 anbi12d φ x B C MblFn k 0 3 2 x if x B 0 C i k C i k 0 x B D MblFn k 0 3 2 x if x B 0 D i k D i k 0
88 eqidd φ x if x B 0 C i k C i k 0 = x if x B 0 C i k C i k 0
89 eqidd φ x B C i k = C i k
90 88 89 1 isibl2 φ x B C 𝐿 1 x B C MblFn k 0 3 2 x if x B 0 C i k C i k 0
91 eqidd φ x if x B 0 D i k D i k 0 = x if x B 0 D i k D i k 0
92 eqidd φ x B D i k = D i k
93 91 92 2 isibl2 φ x B D 𝐿 1 x B D MblFn k 0 3 2 x if x B 0 D i k D i k 0
94 87 90 93 3bitr4d φ x B C 𝐿 1 x B D 𝐿 1
95 84 oveq2d φ k 0 3 i k 2 x if x B 0 C i k C i k 0 = i k 2 x if x B 0 D i k D i k 0
96 95 sumeq2dv φ k = 0 3 i k 2 x if x B 0 C i k C i k 0 = k = 0 3 i k 2 x if x B 0 D i k D i k 0
97 eqid C i k = C i k
98 97 dfitg B C dx = k = 0 3 i k 2 x if x B 0 C i k C i k 0
99 eqid D i k = D i k
100 99 dfitg B D dx = k = 0 3 i k 2 x if x B 0 D i k D i k 0
101 96 98 100 3eqtr4g φ B C dx = B D dx
102 94 101 jca φ x B C 𝐿 1 x B D 𝐿 1 B C dx = B D dx