Description: The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itggt0.1 | |
|
itggt0.2 | |
||
itggt0.3 | |
||
Assertion | itggt0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itggt0.1 | |
|
2 | itggt0.2 | |
|
3 | itggt0.3 | |
|
4 | iblmbf | |
|
5 | 2 4 | syl | |
6 | 5 3 | mbfdm2 | |
7 | 3 | rpred | |
8 | 3 | rpge0d | |
9 | elrege0 | |
|
10 | 7 8 9 | sylanbrc | |
11 | 0e0icopnf | |
|
12 | 11 | a1i | |
13 | 10 12 | ifclda | |
14 | 13 | adantr | |
15 | 14 | fmpttd | |
16 | mblss | |
|
17 | 6 16 | syl | |
18 | rembl | |
|
19 | 18 | a1i | |
20 | 13 | adantr | |
21 | eldifn | |
|
22 | 21 | adantl | |
23 | 22 | iffalsed | |
24 | iftrue | |
|
25 | 24 | mpteq2ia | |
26 | 25 5 | eqeltrid | |
27 | 17 19 20 23 26 | mbfss | |
28 | 3 | rpgt0d | |
29 | 17 | sselda | |
30 | 24 | adantl | |
31 | 30 3 | eqeltrd | |
32 | eqid | |
|
33 | 32 | fvmpt2 | |
34 | 29 31 33 | syl2anc | |
35 | 34 30 | eqtrd | |
36 | 28 35 | breqtrrd | |
37 | 36 | ralrimiva | |
38 | nfcv | |
|
39 | nfcv | |
|
40 | nffvmpt1 | |
|
41 | 38 39 40 | nfbr | |
42 | nfv | |
|
43 | fveq2 | |
|
44 | 43 | breq2d | |
45 | 41 42 44 | cbvralw | |
46 | 37 45 | sylibr | |
47 | 46 | r19.21bi | |
48 | 6 1 15 27 47 | itg2gt0 | |
49 | 7 2 8 | itgposval | |
50 | 48 49 | breqtrrd | |