Metamath Proof Explorer


Theorem itggt0

Description: The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014)

Ref Expression
Hypotheses itggt0.1 φ0<volA
itggt0.2 φxAB𝐿1
itggt0.3 φxAB+
Assertion itggt0 φ0<ABdx

Proof

Step Hyp Ref Expression
1 itggt0.1 φ0<volA
2 itggt0.2 φxAB𝐿1
3 itggt0.3 φxAB+
4 iblmbf xAB𝐿1xABMblFn
5 2 4 syl φxABMblFn
6 5 3 mbfdm2 φAdomvol
7 3 rpred φxAB
8 3 rpge0d φxA0B
9 elrege0 B0+∞B0B
10 7 8 9 sylanbrc φxAB0+∞
11 0e0icopnf 00+∞
12 11 a1i φ¬xA00+∞
13 10 12 ifclda φifxAB00+∞
14 13 adantr φxifxAB00+∞
15 14 fmpttd φxifxAB0:0+∞
16 mblss AdomvolA
17 6 16 syl φA
18 rembl domvol
19 18 a1i φdomvol
20 13 adantr φxAifxAB00+∞
21 eldifn xA¬xA
22 21 adantl φxA¬xA
23 22 iffalsed φxAifxAB0=0
24 iftrue xAifxAB0=B
25 24 mpteq2ia xAifxAB0=xAB
26 25 5 eqeltrid φxAifxAB0MblFn
27 17 19 20 23 26 mbfss φxifxAB0MblFn
28 3 rpgt0d φxA0<B
29 17 sselda φxAx
30 24 adantl φxAifxAB0=B
31 30 3 eqeltrd φxAifxAB0+
32 eqid xifxAB0=xifxAB0
33 32 fvmpt2 xifxAB0+xifxAB0x=ifxAB0
34 29 31 33 syl2anc φxAxifxAB0x=ifxAB0
35 34 30 eqtrd φxAxifxAB0x=B
36 28 35 breqtrrd φxA0<xifxAB0x
37 36 ralrimiva φxA0<xifxAB0x
38 nfcv _x0
39 nfcv _x<
40 nffvmpt1 _xxifxAB0y
41 38 39 40 nfbr x0<xifxAB0y
42 nfv y0<xifxAB0x
43 fveq2 y=xxifxAB0y=xifxAB0x
44 43 breq2d y=x0<xifxAB0y0<xifxAB0x
45 41 42 44 cbvralw yA0<xifxAB0yxA0<xifxAB0x
46 37 45 sylibr φyA0<xifxAB0y
47 46 r19.21bi φyA0<xifxAB0y
48 6 1 15 27 47 itg2gt0 φ0<2xifxAB0
49 7 2 8 itgposval φABdx=2xifxAB0
50 48 49 breqtrrd φ0<ABdx