Metamath Proof Explorer


Theorem itscnhlc0yqe

Description: Lemma for itsclc0 . Quadratic equation for the y-coordinate of the intersection points of a nonhorizontal line and a circle. (Contributed by AV, 6-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q=A2+B2
itscnhlc0yqe.t T=2BC
itscnhlc0yqe.u U=C2A2R2
Assertion itscnhlc0yqe AA0BCR+XYX2+Y2=R2AX+BY=CQY2+TY+U=0

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q=A2+B2
2 itscnhlc0yqe.t T=2BC
3 itscnhlc0yqe.u U=C2A2R2
4 recn AA
5 4 adantr AA0A
6 5 3ad2ant1 AA0BCA
7 6 3ad2ant1 AA0BCR+XYA
8 simp2 AA0BCB
9 8 3ad2ant1 AA0BCR+XYB
10 simpr XYY
11 10 3ad2ant3 AA0BCR+XYY
12 9 11 remulcld AA0BCR+XYBY
13 12 recnd AA0BCR+XYBY
14 recn XX
15 14 adantr XYX
16 15 3ad2ant3 AA0BCR+XYX
17 simp3 AA0BCC
18 17 recnd AA0BCC
19 18 3ad2ant1 AA0BCR+XYC
20 simp11r AA0BCR+XYA0
21 7 13 16 19 20 lineq AA0BCR+XYAX+BY=CX=CBYA
22 21 anbi2d AA0BCR+XYX2+Y2=R2AX+BY=CX2+Y2=R2X=CBYA
23 oveq1 X=CBYAX2=CBYA2
24 23 oveq1d X=CBYAX2+Y2=CBYA2+Y2
25 24 eqeq1d X=CBYAX2+Y2=R2CBYA2+Y2=R2
26 25 biimpac X2+Y2=R2X=CBYACBYA2+Y2=R2
27 simpl AA0A
28 27 3ad2ant1 AA0BCA
29 28 resqcld AA0BCA2
30 29 recnd AA0BCA2
31 30 3ad2ant1 AA0BCR+XYA2
32 17 3ad2ant1 AA0BCR+XYC
33 32 12 resubcld AA0BCR+XYCBY
34 28 3ad2ant1 AA0BCR+XYA
35 33 34 20 redivcld AA0BCR+XYCBYA
36 35 resqcld AA0BCR+XYCBYA2
37 36 recnd AA0BCR+XYCBYA2
38 10 resqcld XYY2
39 38 recnd XYY2
40 39 3ad2ant3 AA0BCR+XYY2
41 31 37 40 adddid AA0BCR+XYA2CBYA2+Y2=A2CBYA2+A2Y2
42 33 recnd AA0BCR+XYCBY
43 27 recnd AA0A
44 43 3ad2ant1 AA0BCA
45 44 3ad2ant1 AA0BCR+XYA
46 42 45 20 sqdivd AA0BCR+XYCBYA2=CBY2A2
47 46 oveq2d AA0BCR+XYA2CBYA2=A2CBY2A2
48 33 resqcld AA0BCR+XYCBY2
49 48 recnd AA0BCR+XYCBY2
50 27 resqcld AA0A2
51 50 recnd AA0A2
52 51 3ad2ant1 AA0BCA2
53 52 3ad2ant1 AA0BCR+XYA2
54 sqne0 AA20A0
55 4 54 syl AA20A0
56 55 biimpar AA0A20
57 56 3ad2ant1 AA0BCA20
58 57 3ad2ant1 AA0BCR+XYA20
59 49 53 58 divcan2d AA0BCR+XYA2CBY2A2=CBY2
60 47 59 eqtrd AA0BCR+XYA2CBYA2=CBY2
61 60 oveq1d AA0BCR+XYA2CBYA2+A2Y2=CBY2+A2Y2
62 41 61 eqtrd AA0BCR+XYA2CBYA2+Y2=CBY2+A2Y2
63 62 eqeq1d AA0BCR+XYA2CBYA2+Y2=A2R2CBY2+A2Y2=A2R2
64 11 resqcld AA0BCR+XYY2
65 36 64 readdcld AA0BCR+XYCBYA2+Y2
66 65 recnd AA0BCR+XYCBYA2+Y2
67 rpre R+R
68 67 resqcld R+R2
69 68 recnd R+R2
70 69 3ad2ant2 AA0BCR+XYR2
71 50 3ad2ant1 AA0BCA2
72 71 3ad2ant1 AA0BCR+XYA2
73 72 recnd AA0BCR+XYA2
74 66 70 73 58 mulcand AA0BCR+XYA2CBYA2+Y2=A2R2CBYA2+Y2=R2
75 binom2sub CBYCBY2=C2-2CBY+BY2
76 19 13 75 syl2anc AA0BCR+XYCBY2=C2-2CBY+BY2
77 76 oveq1d AA0BCR+XYCBY2+A2Y2=C22CBY+BY2+A2Y2
78 77 eqeq1d AA0BCR+XYCBY2+A2Y2=A2R2C22CBY+BY2+A2Y2=A2R2
79 17 resqcld AA0BCC2
80 79 3ad2ant1 AA0BCR+XYC2
81 2re 2
82 81 a1i AA0BCR+XY2
83 32 12 remulcld AA0BCR+XYCBY
84 82 83 remulcld AA0BCR+XY2CBY
85 80 84 resubcld AA0BCR+XYC22CBY
86 12 resqcld AA0BCR+XYBY2
87 85 86 readdcld AA0BCR+XYC2-2CBY+BY2
88 72 64 remulcld AA0BCR+XYA2Y2
89 87 88 readdcld AA0BCR+XYC22CBY+BY2+A2Y2
90 89 recnd AA0BCR+XYC22CBY+BY2+A2Y2
91 68 3ad2ant2 AA0BCR+XYR2
92 72 91 remulcld AA0BCR+XYA2R2
93 92 recnd AA0BCR+XYA2R2
94 90 93 93 subcan2ad AA0BCR+XYC2-2CBY+BY2+A2Y2-A2R2=A2R2A2R2C22CBY+BY2+A2Y2=A2R2
95 85 recnd AA0BCR+XYC22CBY
96 86 recnd AA0BCR+XYBY2
97 88 recnd AA0BCR+XYA2Y2
98 95 96 97 addassd AA0BCR+XYC22CBY+BY2+A2Y2=C22CBY+BY2+A2Y2
99 32 recnd AA0BCR+XYC
100 8 recnd AA0BCB
101 100 3ad2ant1 AA0BCR+XYB
102 11 recnd AA0BCR+XYY
103 99 101 102 mulassd AA0BCR+XYCBY=CBY
104 18 100 mulcomd AA0BCCB=BC
105 104 3ad2ant1 AA0BCR+XYCB=BC
106 105 oveq1d AA0BCR+XYCBY=BCY
107 103 106 eqtr3d AA0BCR+XYCBY=BCY
108 107 oveq2d AA0BCR+XY2CBY=2BCY
109 82 recnd AA0BCR+XY2
110 8 17 remulcld AA0BCBC
111 110 3ad2ant1 AA0BCR+XYBC
112 111 recnd AA0BCR+XYBC
113 109 112 102 mulassd AA0BCR+XY2BCY=2BCY
114 108 113 eqtr4d AA0BCR+XY2CBY=2BCY
115 114 oveq2d AA0BCR+XYC22CBY=C22BCY
116 101 102 sqmuld AA0BCR+XYBY2=B2Y2
117 116 oveq1d AA0BCR+XYBY2+A2Y2=B2Y2+A2Y2
118 9 resqcld AA0BCR+XYB2
119 118 recnd AA0BCR+XYB2
120 34 resqcld AA0BCR+XYA2
121 120 recnd AA0BCR+XYA2
122 64 recnd AA0BCR+XYY2
123 119 121 122 adddird AA0BCR+XYB2+A2Y2=B2Y2+A2Y2
124 117 123 eqtr4d AA0BCR+XYBY2+A2Y2=B2+A2Y2
125 115 124 oveq12d AA0BCR+XYC22CBY+BY2+A2Y2=C2-2BCY+B2+A2Y2
126 98 125 eqtrd AA0BCR+XYC22CBY+BY2+A2Y2=C2-2BCY+B2+A2Y2
127 126 oveq1d AA0BCR+XYC2-2CBY+BY2+A2Y2-A2R2=C22BCY+B2+A2Y2-A2R2
128 80 recnd AA0BCR+XYC2
129 8 resqcld AA0BCB2
130 129 71 readdcld AA0BCB2+A2
131 130 3ad2ant1 AA0BCR+XYB2+A2
132 131 64 remulcld AA0BCR+XYB2+A2Y2
133 9 32 remulcld AA0BCR+XYBC
134 82 133 remulcld AA0BCR+XY2BC
135 134 11 remulcld AA0BCR+XY2BCY
136 132 135 resubcld AA0BCR+XYB2+A2Y22BCY
137 136 recnd AA0BCR+XYB2+A2Y22BCY
138 135 recnd AA0BCR+XY2BCY
139 132 recnd AA0BCR+XYB2+A2Y2
140 128 138 139 subadd23d AA0BCR+XYC2-2BCY+B2+A2Y2=C2+B2+A2Y2-2BCY
141 128 137 140 comraddd AA0BCR+XYC2-2BCY+B2+A2Y2=B2+A2Y2-2BCY+C2
142 141 oveq1d AA0BCR+XYC22BCY+B2+A2Y2-A2R2=B2+A2Y22BCY+C2-A2R2
143 137 128 93 addsubassd AA0BCR+XYB2+A2Y22BCY+C2-A2R2=B2+A2Y22BCY+C2-A2R2
144 139 138 negsubd AA0BCR+XYB2+A2Y2+2BCY=B2+A2Y22BCY
145 144 eqcomd AA0BCR+XYB2+A2Y22BCY=B2+A2Y2+2BCY
146 145 oveq1d AA0BCR+XYB2+A2Y22BCY+C2-A2R2=B2+A2Y2+2BCY+C2A2R2
147 135 renegcld AA0BCR+XY2BCY
148 147 recnd AA0BCR+XY2BCY
149 80 92 resubcld AA0BCR+XYC2A2R2
150 149 recnd AA0BCR+XYC2A2R2
151 139 148 150 addassd AA0BCR+XYB2+A2Y2+2BCY+C2A2R2=B2+A2Y2+2BCY+C2A2R2
152 143 146 151 3eqtrd AA0BCR+XYB2+A2Y22BCY+C2-A2R2=B2+A2Y2+2BCY+C2A2R2
153 127 142 152 3eqtrd AA0BCR+XYC2-2CBY+BY2+A2Y2-A2R2=B2+A2Y2+2BCY+C2A2R2
154 93 subidd AA0BCR+XYA2R2A2R2=0
155 153 154 eqeq12d AA0BCR+XYC2-2CBY+BY2+A2Y2-A2R2=A2R2A2R2B2+A2Y2+2BCY+C2A2R2=0
156 78 94 155 3bitr2d AA0BCR+XYCBY2+A2Y2=A2R2B2+A2Y2+2BCY+C2A2R2=0
157 63 74 156 3bitr3d AA0BCR+XYCBYA2+Y2=R2B2+A2Y2+2BCY+C2A2R2=0
158 1 a1i AA0BCR+XYQ=A2+B2
159 121 119 158 comraddd AA0BCR+XYQ=B2+A2
160 159 oveq1d AA0BCR+XYQY2=B2+A2Y2
161 2 a1i AA0BCR+XYT=2BC
162 161 oveq1d AA0BCR+XYTY=2BCY
163 134 recnd AA0BCR+XY2BC
164 163 102 mulneg1d AA0BCR+XY2BCY=2BCY
165 162 164 eqtrd AA0BCR+XYTY=2BCY
166 3 a1i AA0BCR+XYU=C2A2R2
167 165 166 oveq12d AA0BCR+XYTY+U=2BCY+C2-A2R2
168 160 167 oveq12d AA0BCR+XYQY2+TY+U=B2+A2Y2+2BCY+C2A2R2
169 168 eqcomd AA0BCR+XYB2+A2Y2+2BCY+C2A2R2=QY2+TY+U
170 169 eqeq1d AA0BCR+XYB2+A2Y2+2BCY+C2A2R2=0QY2+TY+U=0
171 170 biimpd AA0BCR+XYB2+A2Y2+2BCY+C2A2R2=0QY2+TY+U=0
172 157 171 sylbid AA0BCR+XYCBYA2+Y2=R2QY2+TY+U=0
173 26 172 syl5 AA0BCR+XYX2+Y2=R2X=CBYAQY2+TY+U=0
174 22 173 sylbid AA0BCR+XYX2+Y2=R2AX+BY=CQY2+TY+U=0